Skip to main content

Modeling and Simulation of SU-8 Thick Photoresist Lithography

  • Reference work entry
  • First Online:
Micro Electro Mechanical Systems

Part of the book series: Micro/Nano Technologies ((MNT))

  • 3270 Accesses

Abstract

SU-8 photoresist can be used to produce high aspect ratio and three-dimensional (3D) lithographic patterning based on standard contact lithography equipment due to its excellent coating, planarization, and processing properties and thus has become the favorite photoresist material for the fabrication of various microelectromechanical system (MEMS) structures and devices. However, as feature sizes get smaller and pattern complexity increases, particular difficulties arise and need to be carefully considered. The accuracy and precision, with which a feature on a mask can be reproduced throughout a thick resist structure, will depend on key parameters in the setup, the material properties of the SU-8 resist, and the thickness of the resist structure. Modeling and simulation studies may help improve our understanding and process design of the SU-8 lithography, thereby allowing rapid product and process development. In this chapter, the basic process and mechanism of UV lithography of the SU-8 are introduced briefly. Various models for the lithography, including the aerial image model, exposure model, postexposure bake model, and development model, are presented and discussed. Main algorithms for the etching surface advancement simulation, including the string, ray-tracing, cellular automaton, and fast-marching algorithms, are then compared and analyzed. Simulations of the UV lithography of the SU-8 are presented, and a series of experiments have been performed for SU-8 2000 series photoresists under UV source with 365 nm (2.6 mW/cm2) radiation. The simulation results demonstrate to be in agreement with the experimental results. This is useful to optimize the inclined UV lithography processes of SU-8 photoresists and to accurately design and control the dimensions of some MEMS microstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adalsteinsson D, Sethian JA (1995) A level set approach to a unified model for etching, deposition, and lithography II: three-dimensional simulations. J Comput Phys 122:348–366

    Article  MathSciNet  Google Scholar 

  • Arnold JC, Sawin HH, Dalvie M et al (1994) Simulation of surface topography evolution during plasma etching by the method of characteristics. J Vac Sci Technol A12:620–635

    Article  Google Scholar 

  • Arthur G, Mack CA, Eilbeck N et al (1998) Analyzing the dissolution characteristics of deep UV chemically amplified photoresist. Microelectron Eng 41–42:311

    Article  Google Scholar 

  • Balslev S, Romanato F (2005) Functionalized SU-8 patterned with x-ray lithography. J Vac Sci Technol B 23:2910–2918

    Article  Google Scholar 

  • Becker EW, Ehrfeld W, Hagmann P et al (1996) Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process). Microelectron Eng 4:35–56

    Article  Google Scholar 

  • Becnel C, Desta Y, Kelly K (2005) Ultra-deep x-ray lithography of densely packed SU-8 features: II. Process performance as a function of dose, feature height and post exposure bake temperature. J Micromech Microeng 15:1249–1259

    Article  Google Scholar 

  • Berry AK, Graziano KA, Bogan LE et al (1989) Polymers in microlithography. In: Proceedings of ACS symposium series, vol 412. American Chemical Society, Washington, DC, pp 87–99

    Google Scholar 

  • Bobbitt MM (2001) The effect of chemistry and network structure on morphological and mechanical properties of diepoxide precursors and poly (hydroxyethers) [PH.D dissertation] Virginia Polytechnic Institute and State University

    Google Scholar 

  • Born M, Wolf E (1999) Principles of optics, 7th edn. Cambridge University Press, London (Chapters 8, 11and 13)

    Google Scholar 

  • Bourdillon AJ, Boothroyd CB, Kong JR et al (2000) A critical condition in Fresnel diffraction used for ultra-high resolution lithographic printing. J Phys D Appl Phys 33:2133–2141

    Article  Google Scholar 

  • Campo A, Greiner C (2007) SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography. J Micromech Microeng 17:R81–R95

    Article  Google Scholar 

  • Cheng Y, Lin CY, Wei DH et al (1999) Wall profile of thick photoresist generated via contact printing. J Microelectromech Syst 8:18–26

    Article  Google Scholar 

  • Cheng YW, Chiang TH, Ngoc DL et al (2009) Fabrication of microlens arrays based on the mass transport effect of SU-8 photoresist using a multiexposure two-beam interference technique. Appl Opt 48:2473–2479

    Article  Google Scholar 

  • Chopp DL (2001) Some improvements on the fast marching method. SIAM J Sci Comp 23:230–244

    Article  MathSciNet  Google Scholar 

  • Chuang YJ, Tseng FG, Lin WK (2002) Reduction of diffraction effect of UV exposure on SU-8 negative thick photoresist by air gap elimination. Microsyst Technol 8:308–303

    Article  Google Scholar 

  • Cole DC, Barouch E, Conrad ED et al (2001) Using advanced simulation to aid microlithography development. Proc IEEE 89:1194–1113

    Article  Google Scholar 

  • Colin DJ, Calame JP, Morag G et al (2010) UV-LIGA microfabrication of 220 GHz sheet beam amplifier gratings with SU-8 photoresists. J Micromech Microeng 20:125016

    Article  Google Scholar 

  • Cooperberg DJ (2002) Semiempirical profile simulation of aluminum etching in a Cl2/BCl3 plasma. J Vac Sci Technol A 20:1536–1556

    Article  Google Scholar 

  • Dill FH, Neureuther AR, Tuttle JA (1975) Modeling projection printing of positive photoresists. IEEE Trans Electron Devices ED-22:456–464

    Article  Google Scholar 

  • Erdmann A, Evanschitzky P, Citarella G et al (2006) Rigorous mask modeling using waveguide and FDTD methods: an assessment for typical hyper NA imaging problems. Proc SPIE 6283:628319

    Article  Google Scholar 

  • Erdmann A, Fuhner T, Shao F et al (2009) Lithography simulation: modeling techniques and selected applications. Proc SPIE 7390:739002–739001

    Article  Google Scholar 

  • Evanschitzky P, Erdmann A (2005) Three dimensional EUV simulations: a new mask near field and imaging simulation system. Proc SPIE 5992:1546

    Google Scholar 

  • Feng M, Hang QA, Zhou ZF et al (2006) Three-dimensional simulation of the deep UV light intensity distribution in SU-8 photoresists. Proc ICSICT 2006:664–666

    Google Scholar 

  • Ferrando N, Gosalvez MA, Cerda J et al (2011) Octree-based, GPU implementation of a continuous cellular automaton for the simulation of complex, evolving surfaces. Comput Phys Comm 182:628–640

    Article  Google Scholar 

  • Fuhner T, Schnattinger T, Ardelean G et al (2007) Dr. LiTHO-a development and research lithography simulator. Proc SPIE 6520:65203F

    Article  Google Scholar 

  • Gosálvez MA, Xing Y, Sato K (2008) Analytical solution of the continuous cellular automaton for anisotropic etching. J Microelectromech Syst 17:410–431

    Article  Google Scholar 

  • Gremaud PA, Kuster CM (2006) Computational study of fast methods for the eikonal equation. SIAM J Sci Comp 27:1803–1814

    Article  MathSciNet  Google Scholar 

  • Hagouel PI (1976) X-ray lithographic fabrication of blazed diffraction gratings [Ph.D. Dissertation] University of California, Berkeley

    Google Scholar 

  • Hamaguchi S, Rossnagel SM (1995) Simulations of trench-filling profiles under ionized magnetron sputter metal deposition. J Vac Sci Technol B13:183–191

    Article  Google Scholar 

  • Han M, Lee W, Lee SK et al (2004) 3D microfabrication with inclined/rotated UV lithography. Sens Actuators A 111:14–20

    Article  Google Scholar 

  • Hassouna MS, Farag AA (2007) Multistencils fast marching methods: a highly accurate solution to the eikonal equation on cartesian domains. IEEE Trans Pat Ana Mach Int 29:1563–1574

    Article  Google Scholar 

  • Henderson CL, Pancholi SN, Chowdhury SA et al (1997) Photoresist characterization for lithography simulation part 2: exposure parameter measurements. Proc SPIE 3049:816–828

    Article  Google Scholar 

  • Henke W, Weiss M, Schwalm R et al (1990) Simulation of proximity printing. Microelecton Eng 10:127–152

    Article  Google Scholar 

  • Hirai Y, Inamoto Y, Sugano K et al (2007) Moving mask UV lithography for three-dimensional structuring. J Micromech Microeng 17:199–206

    Article  Google Scholar 

  • Hoang J, Hsu CC, Chang JP (2008) Feature profile evolution during shallow trench isolation etch in chlorine-based plasmas I feature scale modeling. J Vac Sci Technol B26:1911–1918

    Article  Google Scholar 

  • Hsu CC, Marchack N, Martin R et al (2013) Feature profile evolution during shallow trench isolation etching in chlorine-based plasmas III the effect of oxygen addition. J Vac Sci Technol 31:042201

    Article  Google Scholar 

  • Huang YT, Hsu WY (2014) A simulation model on photoresist SU-8 thickness after development under partial exposure with reflection effect. J J Appl Phys 53:036505

    Article  Google Scholar 

  • Hung KY, Liang TH (2008) Application of inclined-exposure and thick film process for high aspect-ratio micro structures on polymer optic devices. Microsyst Technol 14:1217–1222

    Article  Google Scholar 

  • Hung KY, Hu HT, Tseng FG (2004) Application of 3D glycerol-compensated inclined-exposure technology to an integrated optical pick-up head. J Micromech Microeng 14:975–983

    Article  Google Scholar 

  • Jewett RE, Hagouel PI, Neureuther AR et al (1977) Line-profile resist development simulation techniques. Polym Eng Sci 17:381–384

    Article  Google Scholar 

  • Jiang GM, Baig S, Wang MR (2012) Prism-assisted inclined UV lithography for 3D microstructure fabrication. J Micromech Microeng 22:085022

    Article  Google Scholar 

  • Kang WJ, Rabe E, Kopetzet S (2006) Exposure methods based on reflection and refraction effects in the field of SU-8 lithography. J Micromech Microeng 16:821–831

    Article  Google Scholar 

  • Karafyllidis I (1997) Simulation of the negative chemical amplification deep-ultraviolet process in integrated circuit fabrication. Microelectron Eng 34:155–170

    Article  Google Scholar 

  • Karafyllidis I (1999) A three-dimensional photoresist etching simulator for TCAD. Modeling Simul Mater Sci Eng 7:157–167

    Article  Google Scholar 

  • Karafyllidis I, Thanailakis A (1995) Simulation of two-dimensional photoresist etching process in integrated circuit fabrication using cellular automata. Modeling Simul Mater Sci Eng 3:629–642

    Article  Google Scholar 

  • Karafyllidis I, Hagouel PI, Neureuther AR et al (1999) Negative resist profiles of close-spaced parallel and isolated lines: experiment, modelling and simulation. Microelectron Eng 45:71–84

    Article  Google Scholar 

  • Karafyllidis I, Haguel PI, Thanailakis A et al (2000) An efficient photoresist development simulator based on cellular automata with experimental verification. IEEE Trans Semicond Manuf 13:61–75

    Article  Google Scholar 

  • Leunissen LHA, Jonckheere R, Ronse K, Derksen GB et al (2003) Influence of gate patterning on line edge roughness. J Vac Sci Technol B21:3140–3143

    Article  Google Scholar 

  • Levinson JA, Shaqfeh ESG, Balooch M et al (2000) Ion-assisted etching and profile development of silicon in molecular and atomic chlorine. J Vac Sci Technol B18:172–190

    Article  Google Scholar 

  • Liu SJ, Du JL, Duan X (2005) Enhanced dill exposure model for thick photoresist lithography. Microelectron Eng 78/79:490–495

    Article  Google Scholar 

  • Lucas K, Tanabe H, Strojwas AJ (1996) Efficient and rigorous three-dimensional model for optical lithography simulation. J Opt Soc Am A13:2187–2199

    Article  Google Scholar 

  • Mack CA (1985) PROLISH: a comprehensive optical lithography model. Proc SPIE 538:207–220

    Article  Google Scholar 

  • Mack CA (1992) New kinetic model for resist dissolution. J Electrochem Soc 139:L35

    Article  Google Scholar 

  • Mack CA (2005) 30 years of lithography simulation. Proc SPIE 5754:1–12

    Article  Google Scholar 

  • Mack A, Arthur G (1998) Notch model for photoresist dissolution. Electrochem Solid-State Lett 1:86–87

    Article  Google Scholar 

  • Miao ZY (2013) Modeling and simulation of surface profile formation process of microlenses and their application in optical interconnection devices [PH.D Dissertation] Louisiana State University

    Google Scholar 

  • Moser Y, Forti R, Lehnert JS (2011) Suspended SU-8 structures for monolithic microfluidic channels. Microfluid Nanofluid 10:219–224

    Article  Google Scholar 

  • Neumann J (1966) Theory of self-reproducing automata. University of Illinois Press, Urbana

    Google Scholar 

  • Neureuther AR, Mack CA (1997) Handbook of microlithography, micromaching, and microfabrication. SPIE Optical Engineering Press, Bellingham

    Google Scholar 

  • Nyyssonen D (1982) The theory of optical edge detection and imaging of thick layers. J Opt Soc Am 72:1425–1436

    Article  Google Scholar 

  • Ong BH, Yuan X, Tao S et al (2006) Photothermally enabled lithography for refractive-index modulation in SU-8 photoresist. Opt Lett 31:1367–1369

    Article  Google Scholar 

  • Osher S, Sethian JA (1988) Fronts propagating with curvature dependent speed: algorithms based on the Hamilton-Jacobi formulation. J Comput Phys 79:12–49

    Article  MathSciNet  Google Scholar 

  • Reichmanis E, Houlihan FM, Nalamasu O et al (1994) Polymers for microelectronics. In: proceedings of ACS symposium series, vol 537. American Chemical Society, Washington, DC, pp 3–24

    Google Scholar 

  • Rouabah HA, Park BY, Zaouk RB et al (2011) Design and fabrication of an ac-electro-osmosis micropump with 3D high-aspect-ratio electrodes using only SU-8. J Micromech Microeng 21:125016

    Article  Google Scholar 

  • Rumpf RC, Johnson EG (2005) Comprehensive modeling of near-field nanopatterning. Opt Expres 13:7198–7208

    Article  Google Scholar 

  • Sato H, Yagyu D, Ito S et al (2006) Improved inclined multi-lithography using water as exposure medium and its 3D mixing microchannel application. Sens Actuators A 128:183–190

    Article  Google Scholar 

  • Scheckler EW, Tam NN, Pfau AK et al (1993) An efficient volume-removal algorithm for practical three-dimensional lithography simulation with experimental verification. IEEE Trans Comput-Aided Design Integr Circuit Syst 12:1345–1356

    Article  Google Scholar 

  • Schellenberg FM, Adam K, Matteo J et al (2005) Electromagnetic phenomena in advanced photomasks. J Vac Sci Technol B 23:3106–3115

    Article  Google Scholar 

  • Sensu Y, Sekiguchi A, Mori S (2005) Profiles simulation of SU-8 thick film resist. J Photopoly Sci Tech 18:125–132

    Article  Google Scholar 

  • Sethian JA (1995) A fast marching level set method for monotonically advancing fronts. Proc Natl Acad Sci 93:1591–1595

    Article  MathSciNet  Google Scholar 

  • Sethian JA (1996) Fast marching level-set methods for three-dimensional photolithography development. Proc SPIE 2726:262–272

    Article  Google Scholar 

  • Sethian JA (1999) Level sets methods and fast marching methods, 2nd edn. Cambridge University Press, Cambridge, pp 75–99

    Google Scholar 

  • Sethian JA (2001) Evolution, implementation, and application of level set and fast marching methods for advancing fronts. J Comput Phys 169:503–555

    Article  MathSciNet  Google Scholar 

  • Shao F, Evanschitzky P, Reibold D et al (2008) Fast rigorous simulation of mask diffraction using the waveguide method with parallelized decomposition technique. Proc SPIE 6792:679206

    Article  Google Scholar 

  • Shaw JM, Gelorme JD, LaBianca NC et al (1997) Negative photoresists for optical lithography. IBM J Res Develop 41:81–94

    Article  Google Scholar 

  • Shi LL, Zhou ZF, Li WH et al (2011) A modified 3D fast marching simulation for thick photoresists lithography. In: Proceedings of 10th IEEE sensors, pp 1550–1553

    Google Scholar 

  • Sohn DS, Sohn YS, Bak HJ et al (2001) Analysis of the relation between exposure parameters and critical dimension by response surface model. Proc SPIE 4345:973–982

    Article  Google Scholar 

  • Stout PJ, Rauf S, Nagy A et al (2006) Modeling dual inlaid feature construction. J Vac Sci Technol B24:1344–1352

    Article  Google Scholar 

  • Strasser E, Selberherr S (1995) Algorithms and models for cellular based topography simulation. IEEE Trans Comput-Aided Design Integr Circuit Syst 14:1104–1114

    Article  Google Scholar 

  • Tang XG, Gao FH, Guo YK (2005) Analysis and simulation of diffractive imaging field in thick film photoresist by using angular spectrum theory. Opt Commun 244:123–130

    Article  Google Scholar 

  • Tang XG, Yang XY, Gao FH et al (2007) Simulation and analysis for microstructure profile of optical lithography based on SU-8 thick resist. Microelecton Eng 84:1100–1103

    Article  Google Scholar 

  • Tian X, Liu G, Tian Y et al (2005) Simulation of deep UV lithography with SU-8 resist by using 365 nm light source. Microsyst Technol 11:265–270

    Article  Google Scholar 

  • Toh KKH, Neureuther AR, Scheckler EW (1994) Algorithms for simulation of three-dimensional etching. IEEE Trans Comput-Aided Design Integr Circuit Syst 13:616–624

    Article  Google Scholar 

  • Vyvoda MA, Li M, Graves DB, Lee H et al (2000) Role of sidewall scattering in feature profile evolution during Cl2 and HBr plasma etching of silicon. J Vac Sci Technol B18:820–833

    Article  Google Scholar 

  • Weiss M, Binder H, Schwalm R (1995) Modeling and simulation of chemically amplified DUV resist using the effective acid concept. Microelectron Eng 27:405–409

    Article  Google Scholar 

  • Wong AK, Neureuther AR (1994) Mask topography effects in projection printing of phase-shifting masks. IEEE Trans on Electron Devices 41:895–902

    Article  Google Scholar 

  • Yang R, Wang WJ (2005) A numerical and experimental study on gap compensation and wavelength selection in UV-lithography of ultra-high aspect ratio SU-8 microstructures. Sens Actuators B110:279–288

    Article  Google Scholar 

  • Yang WC, Huang YS, Shew BY et al (2013) Study on diffraction effect and microstructure profile fabricated by one-step backside lithography. J Micromech Microeng 23:035004

    Article  Google Scholar 

  • Yatziv L, Bartesaghi A, Sapiro G (2006) O(N) implementation of the fast marching algorithm. J Comput Phys 212:393–399

    Article  Google Scholar 

  • Yoon YK, Park JH, Allen MG (2006) Multidirectional UV lithography for complex 3-D MEMS structures. J Microelectromech Syst 15:1121–1130

    Article  Google Scholar 

  • Zanghellini J, Achenbach S, El-Kholi A et al (1998) New development strategies for high aspect ratio microstructures. Microsyst Technol 4:94–97

    Article  Google Scholar 

  • Zhao HK (2005) A fast sweeping method for eikonal equations. Math Comp 74:603–627

    Article  MathSciNet  Google Scholar 

  • Zhou ZF, Huang QA, Li WH et al (2005) A novel 2-D dynamic cellular automata model for photoresist etching process simulation. J Micromech Microeng 15:652–662

    Article  Google Scholar 

  • Zhou ZF, Huang QA, Li WH et al (2007a) Improvement of the 2D dynamic CA method for photoresist etching simulation and its application to deep UV lithography simulations of SU-8 photoresists. J Micromech Microeng 17:2538–2547

    Article  Google Scholar 

  • Zhou ZF, Huang QA, Li WH et al (2007b) The swelling effects during the development processes of deep UV lithography of SU-8 photoresists: theoretical study, simulation and verification. In: Proceedings of 6th IEEE sensors, pp 325–328

    Google Scholar 

  • Zhou ZF, Huang QA, Li WH et al (2007c) A cellular automaton-based simulator for silicon anisotropic etching processes considering high index planes. J Micromech Microeng 17:S38–S49

    Article  Google Scholar 

  • Zhou ZF, Huang QA, Li WH et al (2007d) A novel 3D dynamic cellular automata model for photoresist-etching process simulation. IEEE Trans Comput-Aided Design Integr Circuit Syst 26:100–114

    Article  Google Scholar 

  • Zhou ZF, Huang QA, Li WH (2009) Modeling and simulations of anisotropic etching of silicon in alkaline solutions with experimental verification. J Electrochem Soc 156:F29–F37

    Article  Google Scholar 

  • Zhou ZF, Huang QA, Li WH et al (2010) Simulations, analysis and characterization of the development profiles for the thick SU-8 UV lithography process. In: Proceedings of 9th IEEE sensors, pp 2525–2528

    Google Scholar 

  • Zhou ZF, Zhu Z, Huang QA et al (2011) An efficient simulation system for inclined UV lithography processes of thick SU-8 photoresists. IEEE Trans Semicond Manuf 24:294–303

    Article  Google Scholar 

  • Zhou ZF, Shi LL, Zhang H et al (2014) Large scale three-dimensional simulations for thick SU-8 lithography process based on a full hash fast marching method. Microelecton Eng. 123:171–174

    Article  Google Scholar 

  • Zhu ZR, Swecker AL, Strojwas AJ (2004) METRO-3D: an efficient three-dimensional wafer inspection simulator for next-generation lithography. IEEE Trans Semicond Manuf 17:619–628

    Article  Google Scholar 

  • Zhu Z, Zhou ZF, Huang QA et al (2008) Modeling, simulation and experimental verification of inclined UV lithography for SU-8 negative thick photoresists. J Micromech Microeng 18:125017

    Article  Google Scholar 

  • Zhu Z, Zhou ZF, Huang QA et al (2009) A 3D profile simulator for inclined/multi-directional UV lithography process of negative-tone thick photoresists. In: Proceedings of 8th IEEE sensors, pp 57–60

    Google Scholar 

  • Zuniga M, Wallraff G, Tomacruz E (1993) Simulation of locally enhanced three-dimensional diffusion in chemically amplified resists. J Vac Sci Technol B11:2862–2866

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zai-Fa Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zhou, ZF., Huang, QA. (2018). Modeling and Simulation of SU-8 Thick Photoresist Lithography. In: Huang, QA. (eds) Micro Electro Mechanical Systems. Micro/Nano Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-10-5945-2_3

Download citation

Publish with us

Policies and ethics