Skip to main content
Log in

Robust frequency design of linear stationary systems in aeroautoelastics

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Robust frequency design of linear closed-loop stationary aeroelastic systems (LCLSAES) is considered with the help of doubly coprime fractional representations, linear affine manifolds, and the matrix Corona problem as well as with or without the help of the separation principle. The numerical algorithm is produced by using the finite Lagrange-Sylvester interpolation formulas. An example is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahiezer, N. I., and Glazman, I. M. (1966).Theory of Linear Operators in a Hilbert Space (in Russian), Nauka, Moscow.

    Google Scholar 

  • Aliev, F. A., Larin, V. B., and Naumenko, K. I. (1978).Optimizing Linear Time-Invariant Control Systems (in Russian), Naukova Dumka, Kiev.

    Google Scholar 

  • Astapov, I. S., Belotzerkovsky, S. M., Katchanov, B. O., and Kotchetkov, Yu. A. (1982). On integral-differential systems describing nonstationary body motion in continuous medium (in Russian) (known in English asTranslations of Differentsial'nye Uravnenia, Plenum, New York), Dif. Eq. XVIII, 9, 1628–1637.

    Google Scholar 

  • Åström, K. J. (1970).Introduction in Stochatic Control Theory, Academic Press, New York.

    Google Scholar 

  • Bellman, R., and Cooke, K. (1963).Differential Difference Equations, Academic Press, New York.

    Google Scholar 

  • Belotzerkovsky, S. M., Kudryavtzeva, N. A., Pop'italov, S. A., and Tabatchnikov, V. G. (1983).Computer Research of Hypersonic Velocity Aircraft Aerodynamics (in Russian), Nauka, Moscow.

    Google Scholar 

  • Bordjug, B. A., Larin, V. B., Cheremensky, A. G., and Dakev, B. V. (1989). Numerical methods for solving matrix algebraic Riccati equations, inProc. The VIth Nat. Congr. on Theor. Appl. Mech., Bulg. Acad. Sci., Varna, Vol. 1, 165–168.

    Google Scholar 

  • Butkovsky, A. G. (1975).Methods of Control for Distributed Parameter Systems (in Russian), Nauka, Moscow.

    Google Scholar 

  • Cheremensky, A. G. (1986). On analytic theory of stabilization (in Russian),C.R. Acad. Bulg. Sci. 39(2), 35–38.

    Google Scholar 

  • Feintuch, A., and Saeks, R. (1982).System Theory: A Hilbert Space Approach, Academic Press, New York.

    Google Scholar 

  • Fomin, V. N. (1985).Control Methods for Linear Discrete-Time Systems (in Russian), Leningrad University, Leningrad.

    Google Scholar 

  • Gantmacher, F. R. (1964).The Theory of Matrices, Academic Press, New York.

    Google Scholar 

  • Garnett, D. (1984).The Bounded Analytic Functions (in Russian), Mir, Moscow.

    Google Scholar 

  • Kalman, R. E., Falb, P., and Arbib, M. (1966).Topics in Mathematical System Theory, McGraw-Hill, New York.

    Google Scholar 

  • Kamen, E. W., Khargonekar, P. P., and Tannenbaum, A. (1985). Stabilization of time-delay systems using finite-dimensional compensators,IEEE Trans. Automatic Control AC-30, 75–78.

    Google Scholar 

  • Kolmogorov, A. N. (1939). Sur l'Interpolation et Extrapolation des Suites Stationnaires,C. R. Acad. Sci. 208, 2043–2045.

    Google Scholar 

  • Larin, V. B., Naumenko, K. I., and Suntzev, V. N. (1971).Spectral Methods for Synthesizing Linear Closed-Loop Systems (in Russian), Naukova Dumka, Kiev.

    Google Scholar 

  • Naumenko, K. I. (1984). Estimation of stationary states and optimal stabilization of linear systems (in Russian),Izv. Acad. Nauk USSR, Techn. Cybern. 1, 51–58.

    Google Scholar 

  • Salamon, D. (1982). On Control and Observai Neutral Systems, Ph.D. thesis, Bremen University.

  • Tolokonnikov, V. A. (1981). Estimations in the Carleson's Corona theorem,Papers Leningrad Dept. Steklov Math. Inst. 113, 178–198.

    Google Scholar 

  • Wiener, N. (1949).Extrapolation, Interpolation and Smoothing of Stationary Time Series with Engineering Applications (originally issued in 1942, as a classified National Defense Research Council Report), Wiley, New York.

    Google Scholar 

  • Wolovich, W. A. (1974). Linear multivariable systems,Appl. Math. Sci. 11, 1–358.

    Google Scholar 

  • Youla, D. C., Bonjiorno, Y. Y., and Jabr, H. A. (1976). Modern Wiener-Hopf design of optimal controller. Part II: The multivariable case,IEEE Trans. Automatic Control AC-21, 319–338.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheremensky, A.G. Robust frequency design of linear stationary systems in aeroautoelastics. J Sci Comput 6, 211–227 (1991). https://doi.org/10.1007/BF01062120

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01062120

Key words

Navigation