Skip to main content
Log in

Nonlinear state feedback control design to eliminate subcritical limit cycle oscillations in aeroelastic systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A strictly nonlinear state feedback control law is designed for an aeroelastic system to eliminate subcritical limit cycle oscillations. Numerical continuation techniques and harmonic balance methods are employed to generate analytical estimates of limit cycle oscillation commencement velocity and its sensitivity with respect to the introduced control parameters. The obtained estimates are used in a multiobjective optimization framework to generate optimal control parameters which maximize the limit cycle oscillation commencement velocity while minimizing the control cost. Numerical simulations are used to show that the assumed nonlinear state feedback law with the optimal control parameters successfully eliminates any existing subcritical limit cycle oscillations by converting it to supercritical limit cycle oscillations, thereby guaranteeing safe operation of the system in its flight envelope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Lee, B.H.K., Price, S.J., Wong, Y.S.: Nonlinear aeroelastic analysis of airfoils: bifurcation and chaos. Prog. Aerosp. Sci. 35(3), 205–334 (1999)

    Article  Google Scholar 

  2. Dowell, E., Edwards, J., Strganac, T.: Nonlinear aeroelasticity. J. Aircr. 40(5), 857–874 (2003)

    Article  Google Scholar 

  3. Woolston, D.S., Runyan, H.L., Byrdsong, T.A.: Some effects of system nonlinearities in the problem of aircraft flutter, Issue 3539 of Technical note. National Advisory Committee for Aeronautics, United States (1955). http://digital.library.unt.edu/ark:/67531/metadc57724/

  4. Woolston, D.S., Runyan, H.L., Andrews, R.E.: An investigation of effects of certain types of structural nonhnearities on wing and control surface flutter. J. Aeronaut. Sci. 24(1), 57–63 (1957)

  5. Librescu, L., Marzocca, P.: Advances in the linear/nonlinear control of aeroelastic structural systems. Acta Mech. 178(3–4), 147–186 (2005)

    Article  MATH  Google Scholar 

  6. Nayfeh, A.H.: On direct methods for constructing nonlinear normal modes of continuous systems. J. Vib. Control 1(4), 389–430 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Liu, L., Wong, Y.S., Lee, B.H.K.: Application of the centre manifold theory in non-linear aeroelasticity. J. Sound Vib. 234(4), 641–659 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ghommem, M., Nayfeh, A.H., Hajj, M.R.: Control of limit cycle oscillations of a two-dimensional aeroelastic system. Math. Probl. Eng. (2010). doi:10.1155/2010/782457

  9. Liu, L., Dowell, Earl H.: Harmonic balance approach for an airfoil with a freeplay control surface. AIAA J. 43(4), 802–815 (2005)

    Article  Google Scholar 

  10. Dimitriadis, G.: Continuation of higher-order harmonic balance solutions for nonlinear aeroelastic systems. J. Aircr. 45(2), 523–537 (2008)

    Article  Google Scholar 

  11. Vakakis, A.F.: Analysis and Identification of Linear and Nonlinear Normal Modes in Vibrating Systems. Ph.D. Thesis, California Institute of Technology (1991)

  12. Jiang, D., Pierre, C., Shaw, S.W.: Nonlinear normal modes for vibratory systems under harmonic excitation. J. Sound Vib. 288(4), 791–812 (2005)

    Article  Google Scholar 

  13. Emory, C.W., Patil, M.J.: Predicting limit cycle oscillation in an aeroelastic system using nonlinear normal modes. J. Aircr. 50(1), 73–81 (2013)

    Article  Google Scholar 

  14. Shukla, H., Patil, M.: Control of limit cycle oscillation amplitudes in nonlinear aerelastic systems using nonlinear normal modes. In: AIAA Atmospheric Flight Mechanics Conference (2016)

  15. Shahrzad, P., Mahzoon, M.: Limit cycle flutter of airfoils in steady and unsteady flows. J. Sound Vib. 256(2), 213–225 (2002)

    Article  Google Scholar 

  16. Liu, J.-K., Zhao, L.-C.: Bifurcation analysis of airfoils in incompressible flow. J. Sound Vib. 154(1), 117–124 (1992)

    Article  MATH  Google Scholar 

  17. Jiang, L.Y., Lee, B.H.K., Wong, Y.S.: Flutter of an airfoil with a cubic restoring force. J. Fluids Struct. 13(1), 75–101 (1999)

    Article  Google Scholar 

  18. Lee, B.H.K., Liu, L., Chung, K.W.: Airfoil motion in subsonic flow with strong cubic nonlinear restoring forces. J. Sound Vib. 281(3), 699–717 (2005)

    Article  Google Scholar 

  19. Guo, H., Chen, Y.: Supercritical and subcritical hopf bifurcation and limit cycle oscillations of an airfoil with cubic nonlinearity in supersonic\(\backslash \) hypersonic flow. Nonlinear Dyn. 67(4), 2637–2649 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Theodorsen, T., Mutchler, WH.: General theory of aerodynamic instability and the mechanism of flutter, NACA Report 496. National Advisory Committee for Aeronautics, United States (1935)

  21. Marzocca, P., Librescu, L., Silva, W.A.: Flutter, postflutter, and control of a supersonic wing section. J. Guid. Control Dyn. 25(5), 962–970 (2002)

    Article  Google Scholar 

  22. Lee, I., Kim, S.-H.: Aeroelastic analysis of a flexible control surface with structural nonlinearity. J. Aircr. 32(4), 868–874 (1995)

    Article  Google Scholar 

  23. Holmes, P.J.: Bifurcations to divergence and flutter in flow-induced oscillations: a finite dimensional analysis. J. Sound Vib. 53(4), 471–503 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  24. Guckenheimer, J., Holmes, P.: Nonlinear oscillations, dynamical systems and bifurcations of vector fields. J. Appl. Mech. 51(4), 947 (1984). doi:10.1115/1.3167759

  25. Liu, L., Dowell, E.H.: The secondary bifurcation of an aeroelastic airfoil motion: effect of high harmonics. Nonlinear Dyn. 37(1), 31–49 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hall, K.C., Ekici, K., Thomas, J.P., Dowell, E.H.: Harmonic balance methods applied to computational fluid dynamics problems. Int. J. Comput. Fluid Dyn. 27(2), 52–67 (2013)

    Article  MathSciNet  Google Scholar 

  27. Allgower, E.L., Georg, K.: Numerical Continuation Methods: An Introduction, vol. 13. Springer, Berlin (2012)

    MATH  Google Scholar 

  28. Marsden, J.E, Hoffman, M.J: Elementary Classical Analysis. W.H. Freeman & Company, New York (1993)

  29. Keller, H.B.: Numerical solution of bifurcation and nonlinear eigenvalue problems. Appl. Bifurc. Theory 1(38), 359–384 (1977)

    MathSciNet  Google Scholar 

  30. Keller, H.B.: Global homotopies and newton methods. Recent Adv. Numer. Anal. 41, 73–94 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  31. Keller, H.B.: Lectures on numerical methods in bifurcation problems. Appl. Math. 217, 50 (1987)

    Google Scholar 

  32. Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: Matcont: a matlab package for numerical bifurcation analysis of odes. ACM Trans. Math. Softw. (TOMS) 29(2), 141–164 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms, vol. 16. Wiley, London (2001)

    MATH  Google Scholar 

  34. Haftka, R.T., Gürdal., Z.: Elements of Structural Optimization, vol. 11. Springer, Berlin (2012)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himanshu Shukla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, H., Patil, M.J. Nonlinear state feedback control design to eliminate subcritical limit cycle oscillations in aeroelastic systems. Nonlinear Dyn 88, 1599–1614 (2017). https://doi.org/10.1007/s11071-017-3332-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3332-5

Keywords

Navigation