Skip to main content
Log in

Chaotic states in a random world: Relationship between the nonlinear differential equations of excitability and the stochastic properties of ion channels

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Excitable membranes allow cells to generate and propagate electrical signals. In the nervous system these signals transmit information, in muscle they trigger contraction, and in heart they regulate spontaneous beating. A central question in excitability theory concerns the relationship between the aggregate properties of membranes (marcoscopic) and the properties of channels in the membranes (mircoscopic). Hodgkin and Huxley (1952) laid the foundations of membrane excitability, and Neher and Sakmann (1976) developed techniques to study individual channels. This article focuses on the relationship between the macroscopic domain, in which non-linear differential equations determine the electrical properties of cells, and the microscopic domain, in which the probabilistic nature of channels establishes the pattern of activity. Using nerve cell membranes as an example, we examine how information in one domain predicts behavior in the other. We conclude that the probabilistic nature of channels generates virtually all macroscopic electrical properties, including resting potentials, action potentials, spontaneous firing, and chaos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. M. Armstrong, Inactivation of the potassium conductance and related phenomena caused by quaternary ammonium ion injected in squid axons,J. Gen. Physiol. 54:553–575 (1969).

    PubMed  Google Scholar 

  2. D. R. Chialvo, R. F. Gilmour, Jr., and J. Jalife, Low dimensional chaos in cardiac tissue,Nature 343:653–657 (1990).

    Google Scholar 

  3. J. R. Clay and R. L. DeHaan, Fluctuations in interbeat interval in rhythmic heart-cell clusters: Role of membrane voltage noise,Biophys. J. 28:377–390 (1979).

    Google Scholar 

  4. J. R. Clay and L. J. DeFelice, Relationship between membrane excitability and single channel open-close kinetics,Biophys. J. 42:151–157 (1983).

    PubMed  Google Scholar 

  5. F. Conti, Noise analysis and single-channel recordings,Curr. Top. Membrane Trans. 22:371–105 (1984).

    Google Scholar 

  6. F. Conti and E. Wanke, Channel noise in membranes and lipid bilayers,Q. Rev. Biophys. 8:451–506 (1975).

    Google Scholar 

  7. F. Conti, L. J. DeFelice, and E. Wanke, Postassium and sodium ion current noise in the membrane of the squid giant axon,J. Physiol. (London)248:45–82 (1975).

    Google Scholar 

  8. F. Conti and E. Neher, Single channel recordings of K currents in squid axon,Nature 285:140–143 (1980).

    Google Scholar 

  9. L. J. DeFelice, Fluctuation analysís in neurobiology,Int. Rev. Neurobiol. 20:169–208 (1977).

    Google Scholar 

  10. L. J. DeFelice,Introduction to Membrane Noise (Plenum Press, New York, 1981).

    Google Scholar 

  11. L. J. DeFelice, W. J. Adelman, Jr., D. E. Clapham, and A. Mauro, Second-order admittance in squid axon, inThe Biophysical Approach to Excitable Systems, W. J. Adelman, Jr. and D. E. Goldman, eds. (Plenum Press, New York, 1981).

    Google Scholar 

  12. L. J. DeFelice and J. Clay, Membrane channel and membrane potential from single-current kinetics, inSingle-Channel Recording, B. Sakmann and E. Neher, eds. (Plenum Press, New York, 1983).

    Google Scholar 

  13. L. J. DeFelice, W. N. Goolsby, and D. Huang, Membrane noise and excitability, inNoise in Physical Systems, A. D'Amico and P. Mazzetti, eds. (Elsevier, Amsterdam, 1985).

    Google Scholar 

  14. L. J. DeFelice, Noise biological membranes, inNoise in Physical Systems, A. Ambrozy, ed. (Elsevier, Amsterdam, 1989).

    Google Scholar 

  15. L. J. DeFelice, Molecular biology and biophysics of Ca channels: A hypothesis concerning oligomeric structure, channel clustering, and macroscopic current, inNeural Engineering, Y. Kim and X. Thakor, eds. (Springer-Verlag, Heidelberg, 1992).

    Google Scholar 

  16. G. Ehrenstein, H. Lecar, and R. Nossal, The nature of the negative resistance in bimolecular lipid membranes containing excitability inducing material,J. Gen. Physiol. 55:119–133 (1970).

    Google Scholar 

  17. G. Ehrenstein and H. Lecar, Electrically gated ionic channels in lipid bilayers,Q. Rev. Biophys. 10:1–34 (1977).

    Google Scholar 

  18. G. Feher, Emerging techniques: Fluctuation spectroscopy, inTrends in Biochemical Sciences (Elsevier, Amsterdam, 1978), Vol. 3, pp. 111–113.

    Google Scholar 

  19. R. FitzHugh, A kinetic model of the conductance changes in nerve membrane,J. Cell Comp. Physiol. 66:111–118 (1965).

    Google Scholar 

  20. J. R. Guevara, A. C. G. van Ginneken, and H. J. Jongsma, Patterns of activity in a reduced ionic model of a cell from the rabbit sinoatrial node, inChaos in Biological Systems, H. Degn, A. V. Holde, and L. F. Olsen, eds. (Plenum Press, New York, 1987).

    Google Scholar 

  21. J. R. Guevara, Mathematical modeling of the electrical activity of cardiac cells, inTheory of Heart, L. Glass, P. Hunter, and A. McCullogh, eds. (Springer, New York, 1990).

    Google Scholar 

  22. T. L. Hill and Y.-D. Chen, On the theory of ion transport across nerve membrane IV: Noise from the open-close kinetics of K channels,Biophys. J. 12:948–959 (1972).

    Google Scholar 

  23. B. Hille,Ionic Channels of Excitable Membranes (Sinauer, Sunderland, Massachusetts, 1992).

    Google Scholar 

  24. A. L. Hodgkin and A. F. Huxley, A qualitative description of membrane current and its application to conduction in nerve,J. Physiol. 177:440–544 (1952).

    Google Scholar 

  25. T. J. Lewis and M. R. Guevara, Chaotic dynamics in an ionic model of the propagated cardiac action potential,J. Theor. Biol. 146:407–32 (1990).

    Google Scholar 

  26. L. S. Liebovitch and T. I. Toth, A model of ion channel kinetics using deterministic chaotic rather than stochastic processes,J. Theor. Biol. 148:243–267 (1991).

    Google Scholar 

  27. L. S. Liebovitch, Interpretation of protein structure and dynamics from the statistics of the open and closed times measured in a single ion-channel protein,J. Stat. Phys. 70:329–337 (1993).

    Google Scholar 

  28. I. Llano, C. K. Webb, and F. Bezanilla, Potassium conductance of the squid giant axon,J. Gen. Physiol. 92:179–196 (1988).

    Google Scholar 

  29. M. Mazzanti, L. J. DeFelice, Y. M. Liu, Gating of L-type Ca currents in embryonic chick ventricle-cells: Dependence on voltage, current, and channel density,J. Physiol. 443:307–334 (1991).

    Google Scholar 

  30. E. Neher and B. Sakmann, Single-channel currents recorded from membrane of denervated frog muscle fibres,Nature 260:779–802 (1976).

    Google Scholar 

  31. E. Neher and C. F. Stevens, Conductance fluctuations and ionic pores in membranes,Annu. Rev. Biophys. Bioeng. 6:345–381 (1977).

    Google Scholar 

  32. B. Neumcke, 1/f noise in membranes,Biophys. Struct. Mech. 4:179–199 (1978).

    Google Scholar 

  33. B. Neumcke, Fluctuation of Na and K currents in excitable membranes,Int. Rev. Neurobiol. 23:35–67 (1982).

    Google Scholar 

  34. B. Sakmann and E. Neher,Single-Channel Recording (Plenum Press, New York, 1984).

    Google Scholar 

  35. F. L. Sigworth and E. Neher, Single Na channel currents observed in cultured rat muscle cells,Nature 287:447–449 (1980).

    PubMed  Google Scholar 

  36. C. F. Stevens, Inferences about membrane properties from electrical noise measurements,Biophys. J. 12:1028–1047 (1972).

    PubMed  Google Scholar 

  37. C. F. Stevens, Principles and applications of fluctuation analysis: A non-mathematical introduction,Fed. Am. Soc. Exp. Biol. 34:1364–1370 (1975).

    Google Scholar 

  38. A. A. Verveen and L. J. DeFelice, Membrane noise,Prog. Biophys. Mol. Biol. 28:189–265 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeFelice, L.J., Isaac, A. Chaotic states in a random world: Relationship between the nonlinear differential equations of excitability and the stochastic properties of ion channels. J Stat Phys 70, 339–354 (1993). https://doi.org/10.1007/BF01053972

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01053972

Key words

Navigation