Skip to main content
Log in

A random discrete velocity model and approximation of the Boltzmann equation

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

An approximation procedure for the Boltzmann equation based on random choices of collision pairs from a fixed velocity set and on discrete velocity models is designed. In a suitable limit, the procedure is shown to converge to the time-discretized and spatially homogeneous Boltzmann equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Broadwell, Shock structure in a simple discrete velocity gas,Phys. Fluids 7:1243–1247 (1964).

    Google Scholar 

  2. T. Platkowski, Boundary value problems for a class of the Broadwell models in bounded domains with general boundary data,Transport Theory Stat. Phys. 20(2&3):199–220 (1991).

    Google Scholar 

  3. R. DiPerna and P. L. Lions, On the Cauchy problem for the Boltzmann equation: Global existence and weak stability,Ann. Math. 130:321–366 (1989).

    Google Scholar 

  4. J. M. Bony, Existence globale à données de Cauchy petites pour les modèles discrets de l'équation de Boltzmann,Commun. Partial Differential Equations (1991).

  5. C. Cercignani, R. Illner, and M. Shinbrot, A boundary value problem for discrete-velocity models,Duke Math. J. 55(4):889–900 (1987).

    Google Scholar 

  6. H. Cornille, Exact solutions of the Broadwell equations in 1+1 dimensions,J. Phys. A: Math. Gen. 20:1973–1988 (1987).

    Google Scholar 

  7. H. Cabannes and D. H. Tiem, Exact solutions for some discrete models of Boltzmann equation,Complex Systems 1:575–585 (1987).

    Google Scholar 

  8. J. M. Greenberg and C. Moler, Collisionless solutions to the four velocity Broadwell equations, inMultidimensional Hyperbolic Problems and Computations, eds. J. Glimm and A. Majda, IMA Vol. 29, 140–155 (Springer, 1991).

  9. R. Illner and T. Platkowski, Discrete velocity models of the Boltzmann equation: A survey on the mathematical aspects of the theory,SIAM Rev. 30(2):213–255 (1988).

    Google Scholar 

  10. U. Sultangazin,Discrete Nonlinear Models of the Boltzmann Equation (Nauka, Moscow, 1987).

    Google Scholar 

  11. N. A. Nurlybaev, Discrete models of the Boltzmann equation, inAbstracts of Euromech Colloquium 285 “Kinetic Theory, Transfer Processes of Evaporation and Condensation” (Minsk, 1991), pp. 39–41.

  12. H. Babovsky and R. Illner, A convergence proof for Nanbu's simulation method for the full Boltzmann equation,SIAM J. Numer. Anal. 26(1):45–65 (1989).

    Google Scholar 

  13. H. Babovsky, A convergence proof for Nanbu's Boltzmann simulation scheme,Eur. J. Mech. B/Fluids 8(1):41–55 (1989).

    Google Scholar 

  14. W. Wagner, A convergence proof for Bird's direct simulation Monte Carlo method for the Boltzmann equation,J. Stat. Phys. 66(3/4):1011–1044 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Illner, R., Wagner, W. A random discrete velocity model and approximation of the Boltzmann equation. J Stat Phys 70, 773–792 (1993). https://doi.org/10.1007/BF01053594

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01053594

Key words

Navigation