Skip to main content
Log in

The tortuosity of occupied crossings of a box in critical percolation

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the length of an occupied crossing of a box of size [0,n]×[0, 3n]D−1 (in the short direction) in standard (Bernoulli) bond percolation on ℤD at criticality. Let ¦s n¦ be the length of the shortest such crossing. It is believed that ¦s n¦ ≈1+c in some sense for somec>0. Here we show that if the correlation lengthξ(p) satisfies ξ(p)</(p c}−p) −ν for some ν<1, then with a probability tending to 1, ¦s n¦>/C 1 n 1/ν(logn)−(1−ν)/ν. The assumption ξ(p)⩽C 3(p cp)−ν with ν<1 has been rigorously established(1,2) for largeD, but cannot hold(3) forD=2. In the latter case, let ¦l n¦ be the length of the lowest occupied crossing of the square [0,n]2. We outline a proof ofP pc(¦ln¦ ⩽n 1+c)⩽n −α for somec, α>0. We also obtain a result about the length of optimal paths in first-passage percolation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Hara and G. Slade, Mean-field critical behaviour for percolation in high dimensions,Comm. Math. Phys. 128:333–391 (1990).

    Google Scholar 

  2. T. Hara, Mean-field critical behaviour for correlation length for percolation in high dimensions,Prob. Theory Related Fields 86:337–385 (1990).

    Google Scholar 

  3. H. Kesten, Scaling relations for 2D-percolation,Comm. Math. Phys. 109:109–156 (1987).

    Google Scholar 

  4. P. G. de Gennes, La percolation: Un concept unificateur,La Recherche 7:919–927 (1976).

    Google Scholar 

  5. R. Pike and H. E. Stanley, Order propagation near the percolation threshold,J. Phys. A 14:L169-L177 (1981).

    Google Scholar 

  6. S. Alexander and R. Orbach, Density of states on fractals: “fractons”,J. Phys. Lett. (Paris)43:L625-L631 (1982).

    Google Scholar 

  7. H. E. Stanley and A. Coniglio, Fractal structure of the incipient infinite cluster in percolation, in Percolation Structures and Processes,Ann. Israel Phys. Soc. 5:101–120 (1983).

    Google Scholar 

  8. F. Leyvraz and H. E. Stanley, To what class of fractals does the Alexander-Orbach conjecture apply?Phys. Rev. Lett. 51:2048–2051 (1983).

    Google Scholar 

  9. B. F. Edwards and A. R. Kerstein, Is there a lower critical dimension for chemical distance?J. Phys. A 18:L1081-L1086 (1985).

    Google Scholar 

  10. H. J. Hermann and H. E. Stanley, The fractal dimension of the minimum path in two- and three-dimensional percolation,J. Phys. A 21:L829-L833 (1988).

    Google Scholar 

  11. T. E. Harris, A lower bound for the critical probability in a certain percolation process,Proc. Camb. Phil. Soc. 56:13–20 (1960).

    Google Scholar 

  12. H. Kesten, The incipient infinite cluster in two-dimensional percolation,Prob. Theory Related Fields 73:369–394 (1986).

    Google Scholar 

  13. G. Grimmett,Percolation (Springer-Verlag, Berlin, 1989).

    Google Scholar 

  14. D. Stauffer, Scaling properties of percolation clusters, inDisordered Systems and Localization, C. Castellani, C. Di Castro, and L. Peliti, eds. (Springer-Verlag, Berlin, 1981), pp. 9–25.

    Google Scholar 

  15. H. Kesten,Percolation Theory for Mathematicians (Birkhäuser, Boston, 1982).

    Google Scholar 

  16. L. Russo, A note on percolation,Z. Wahrsch. Verw. Geb. 43:39–48 (1978).

    Google Scholar 

  17. P. D. Seymour and D. J. A. Welsh, Percolation probabilities on the square lattice,Ann. Discrete Math. 3:227–245 (1978).

    Google Scholar 

  18. H. Kesten, The critical probability of bond percolation on the square lattice equals 1/2,Comm. Math. Phys. 74:41–59 (1980).

    Google Scholar 

  19. R. T. Smythe and J. C. Wierman,First-Passage Percolation on the Square Lattice (Springer-Verlag, Berlin 1978).

    Google Scholar 

  20. H. Kesten, Aspects of first-passage percolation, inLecture Notes in Mathematics, Vol. 1180 (Springer-Verlag, Berlin, 1986), pp. 126–264.

    Google Scholar 

  21. Y. Zhang and Y. C. Zhang, A limit theorem forN 0,n/n in first-passage percolation,Ann. Prob. 12:1068–1076 (1984).

    Google Scholar 

  22. Y. Zhang, A shape theorem for epidemics and forest fires with finite range interactions, Preprint (1991).

  23. H. Kesten, On the time constant and path length of first-passage percolation,Adv. Appl. Prob. 12:848–863 (1980).

    Google Scholar 

  24. L. Chayes, On the critical behavior of the first passage time ind⩾3,Helv. Phys. Acta 64:1055–1069 (1991).

    Google Scholar 

  25. J. T. Chayes, L. Chayes, and R. Durrett, Critical behavior of the two-dimensional first passage time,J. Stat. Phys. 45:933–951 (1986).

    Google Scholar 

  26. H. Kesten and Y. Zhang, Strict inequalities for some critical exponents in two-dimensional percolation,J. Stat. Phys. 46:1031–1055 (1987).

    Google Scholar 

  27. R. Durrett,Probability: Theory and Examples (Wadsworth & Brooks/Cole, 1991).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kesten, H., Zhang, Y. The tortuosity of occupied crossings of a box in critical percolation. J Stat Phys 70, 599–611 (1993). https://doi.org/10.1007/BF01053586

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01053586

Key words

Navigation