Skip to main content
Log in

Marriage of exact enumeration and 1/d expansion methods: Lattice model of dilute polymers

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the properties of a self-avoiding polymer chain with nearestneighbor contact energyɛ on ad-dimensional hypercubic lattice. General theoretical arguments enable us to prescribe the exact analytic form of then-segment chain partition functionC n ,and unknown coefficients for chains of up to 11 segments are determined using exact enumeration data ind=2–6. This exact form provides the main ingredient to produce a large-n expansion ind −1of the chain free energy through fifth order with the full dependence on the contact energy retained. The ɛ-dependent chain connectivity constant and free energy amplitude are evaluated within thed −1expansion toO(d −5). Our general formulation includes for the first time self-avoiding walks, neighboravoiding walks, theta, and collapsed chains as particular limiting cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. J. C. Orr,Trans. Faraday Soc. 42:12 (1946).

    Google Scholar 

  2. H. Yamakawa,Modern Theory of Polymer Solutions (Harper & Row, New York, 1971); P. J. Flory,Statistical Mechanics of Chain Molecules (Wiley-Interscience, New York, 1969).

    Google Scholar 

  3. P. G. de Gennes,Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, New York, 1979); M. Doi and S. F. Edwards,Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986); K. F. Freed,Renormalization Group Theory of Macromolecules (Wiley, New York, 1987).

    Google Scholar 

  4. M. E. Fisher and B. J. Hiley,J. Chem. Phys. 34:1253 (1961).

    Google Scholar 

  5. D. C. Rapaport,Phys. Lett. A 48:339 (1974);J. Phys. A 9:1521 (1976);10:637 (1977).

    Google Scholar 

  6. T. Ishinabe,J. Phys. A 18:3181 (1985);20:6435 (1987); T. Ishinabe and Y. Chikahisa,J. Chem. Phys. 85:1009 (1986).

    Google Scholar 

  7. V. Privman,J. Phys. A 19:3287 (1986).

    Google Scholar 

  8. J. Mazur and F. L. McCrackin,J. Chem. Phys. 49:648 (1968); F. L. McCrackin, J. Mazur, and C. L. Guttman,Macromolecules 6:859 (1973).

    Google Scholar 

  9. A. Baumgartner,J. Phys. (Paris)43:1407 (1982); see also A. Baumgartner, inApplications of the Monte Carlo Method in Statistical Physics, K. Binder, ed. (Springer-Verlag, Heilderberg, 1987).

    Google Scholar 

  10. K. Kremer, A. Baumgartner, and K. Binder,J. Phys. A 15:2879 (1982); F. Seno and A. L. Stella,J. Phys. (France)49:739 (1988);Europhys. Lett. 7:605 (1989).

    Google Scholar 

  11. H. Meirovitch and H. A. Lim,J. Chem. Phys. 91:2544 (1989);Phys. Rev. A 39:4186 (1989); X.-F. Yuan and A. J. Masters,J. Chem. Phys. 94:6908 (1991).

    Google Scholar 

  12. V. Privman and N. M. Svrakic,Directed Models of Polymers, Interfaces, and Clusters: Scaling and Finite-Size Properties (Springer-Verlag, Berlin, 1989).

    Google Scholar 

  13. K. F. Freed and M. G. Bawendi,J. Phys. Chem. 93:2194 (1989).

    Google Scholar 

  14. J. Dudowicz, K. F. Freed, and W. G. Madden,Macromolecules 23:4803 (1990); J. Dudowicz and K. F. Freed,Macromolecules 24:5076, 5096, 5112 (1991);J. Chem. Phys. 96:1644 (1992).

    Google Scholar 

  15. A. M. Nemirovsky and M. D. Coutinho-Filho,J. Stat. Phys. 53:1139 (1988);Phys. Rev. A 39:3120 (1989).

    Google Scholar 

  16. A. M. Nemirovsky, J. Dudowicz, and K. F. Freed,J. Stat. Phys., in press;Phys. Rev. A, in press.

  17. M. E. Fisher and D. S. Gaunt,Phys. Rev. 133A:224 (1964).

    Google Scholar 

  18. P. R. Gerber and M. E. Fisher,Phys. Rev. B 10:4697 (1974).

    Google Scholar 

  19. D. S. Gaunt, M. F. Sykes, and H. Ruskin,J. Phys. A 9:1899 (1976); D. S. Gaunt and H. Ruskin,J. Phys. A 11:1369 (1978); J. Blease,J. Phys. C 10:925 (1977).

    Google Scholar 

  20. S. G. Whittington, G. M. Torrie, and D. S. Gaunt,J. Phys. A 16:1695 (1983).

    Google Scholar 

  21. D. S. Gaunt, J. E. G. Lipson, J. L. Martin, M. F. Sykes, G. M. Torrie, S. G. Whittington, and M. K. Wilkinson,J. Phys. A 17:211 (1984).

    Google Scholar 

  22. D. S. Gaunt and H. Ruskin,J. Phys. A 11:1369 (1978).

    Google Scholar 

  23. G. A. Baker, Jr., and L. P. Benofy,J. Stat. Phys. 29:699 (1982).

    Google Scholar 

  24. J. Zinn Justin,Phys. Rep. 70:109 (1981).

    Google Scholar 

  25. K. F. Freed,J. Phys. A 18:871 (1985); see also M. Janssens and A. Bellemans,Macromolecules 9:303 (1976).

    Google Scholar 

  26. T. Ishinabe, J. F. Douglas, A. M. Nemirovsky, and K. F. Freed, work in progress.

  27. D. S. Gaunt,J. Phys. A 19:L149 (1986).

    Google Scholar 

  28. T. Hara and G. Slade, submitted for publication.

  29. A. M. Nemirovsky, K. F. Freed, T. Ishinabe, and J. F. Douglas,Phys. Lett. A 162:469 (1992).

    Google Scholar 

  30. A. M. Nemirovsky and K. F. Freed, work in progress.

  31. M. E. Fisher and R. R. P. Singh, inDisorder in Physical Systems, G. Grimmett and D. J. Welsh, eds. (Oxford University Press, Oxford, 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nemirovsky, A.M., Freed, K.F., Ishinabe, T. et al. Marriage of exact enumeration and 1/d expansion methods: Lattice model of dilute polymers. J Stat Phys 67, 1083–1108 (1992). https://doi.org/10.1007/BF01049010

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01049010

Key words

Navigation