Skip to main content
Log in

Trapping, percolation, and anomalous diffusion of particles in a two-dimensional random field

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We analyze from first principles the advection of particles in a velocity field with HamiltonianH(x, y)=¯ V 1 y−¯ V 2 x+W 1 (y)-W 2 (x), whereW i , i=1, 2, are random functions with stationary, independent increments. In the absence of molecular diffusion, the particle dynamics are very sensitive to the streamline topology, which depends on the mean-to-fluctuations ratioρ=max(|¯V1¦/Ū; ¦¯V2|/Ū), withŪ =〈|W 1 ′|21/2=rms fluctuations. Remarkably, the model is exactly solvable forρ ⩾1 and well suited for Monte Carlo simulations for all ρ, providing a nice setting for studying seminumerically the influence of streamline topology on large-scale transport. First, we consider the statistics of streamlines forρ=0, deriving power laws for pnc(L) and 〈λ(L)〉, which are, respectively, the escape probability and the length of escaping trajectories for a box of sizeL, L » 1. We also obtain a characterization of the “statistical topography” of the HamiltonianH. Second, we study the large-scale transport of advected particles withρ > 0. For 0 <ρ < 1, a fraction of particles is trapped in closed field lines and another fraction undergoes unbounded motions; while for ρ⩾ 1 all particles evolve in open streamlines. The fluctuations of the free particle positions about their mean is studied in terms of the normalized variablest v/2[x(t)−〈x(t)〉] andt −v/2[y(t)-〈(t)〉]. The large-scale motions are shown to be either Fickian (ν=1), or superdiffusive (ν=3/2) with a non-Gaussian coarse-grained probability, according to the direction of the mean velocity relative to the underlying lattice. These results are obtained analytically for ρ ⩾ 1 and extended to the regime 0<ρ<1 by Monte Carlo simulations. Moreover, we show that the effective diffusivity blows up for resonant values of\((\bar V_1 ,\bar V_2 )\)) for which stagnation regions in the flow exist. We compare the results with existing predictions on the topology of streamlines based on percolation theory, as well as with mean-field calculations of effective diffusivities. The simulations are carried out with a CM 200 massively parallel computer with 8192 SIMD processors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Yaron, G. Dagan, and J. Goldshmid, eds.,Pollutants in Porous Media (Springer-Verlag, Berlin, 1984).

    Google Scholar 

  2. R. Kraichnan,Phys. Fluids 13:22 (1970).

    Google Scholar 

  3. D. L. Koch and J. F. Brady,Phys. Fluids A 1:49 (1989).

    Google Scholar 

  4. M. Avellaneda and A. J. Majda,Phys. Rev. Lett. 68:3028 (1992).

    Google Scholar 

  5. R. Kraichnan, inThe Padé Approximant in Theoretical Physics, G. A. Baker, Jr., and Gammel, eds. (Academic Press, New York, 1970) p. 129.

    Google Scholar 

  6. R. Kraichnan,Complex Systems 1:805 (1987).

    Google Scholar 

  7. G. Matheron and G. de Marsily,Water Resources Res. 16:910 (1980).

    Google Scholar 

  8. M. Avellaneda and A. J. Majda,Commun. Math. Phys. 131:339 (1990).

    Google Scholar 

  9. M. Avellaneda and A. J. Majda,Commun. Math. Phys. 146:139 (1992).

    Google Scholar 

  10. S. Redner,Physica 38D:287 (1989).

    Google Scholar 

  11. J. P. Bouchaud, A. Georges, J. Koplik, A. Provata, and S. Redner,Phys. Rev. Lett. 64:2503 (1990).

    Google Scholar 

  12. M. B. Isichenko, J. L. Kalda, E. B. Tatarinova, O. V. Telkovskaia, and V. V. Yankov,Sov. Phys. JETP 69:517 (1989).

    Google Scholar 

  13. M. B. Isichenko and J. L. Kalda,J. Nonlinear Sci. 1:3 (1991).

    Google Scholar 

  14. M. B. Isichenko and J. L. Kalda,J. Nonlinear Sci. 1:375 (1991).

    Google Scholar 

  15. M. B. Isichenko,Rev. Mod. Phys. 64:961 (1992).

    Google Scholar 

  16. M. Avellaneda and A. J. Majda,J. Stat. Phys. 69:689 (1991).

    Google Scholar 

  17. R. Zumofen, J. Klafter, and A. Blumen,J. Stat. Phys. 65:991 (1991).

    Google Scholar 

  18. R. Kubo,J. Math. Phys. 4:174 (1963).

    Google Scholar 

  19. Q. Zhang,J. Stat. Phys. 66:485 (1992).

    Google Scholar 

  20. A. M. Soward and S. Childress,Phil. Trans. R. Soc. Lond. A 331:649 (1990).

    Google Scholar 

  21. C. Apelian, In preparation.

  22. U. N. Baht,Elements of Applied Stochastic Processes (Wiley, New York, 1972).

    Google Scholar 

  23. H. Kesten and G. C. Papanicolaou,Commun. Math. Phys. 65:19 (1979).

    Google Scholar 

  24. A. I. Ibragimov,Theor. Prob. Appl. 7:349 (1962).

    Google Scholar 

  25. P. Billingsley,Convergence of Probability Measures (Wiley, New York, 1968).

    Google Scholar 

  26. D. E. Knuth,The Art of Computer Programming, Vol. II:Seminumerical Algorithms (Addison-Wesley, Reading, Massachusetts, 1973).

    Google Scholar 

  27. A. Friedman,Stochastic Differential Equations and Applications (Academic Press, New York, 1975).

    Google Scholar 

  28. H. Saleur and B. Duplantier,Phys. Rev. Lett. 58(22):2325 (1987).

    Google Scholar 

  29. P. Grassberger,J. Phys. A 19:2675 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avellaneda, M., Elliott, F. & Apelian, C. Trapping, percolation, and anomalous diffusion of particles in a two-dimensional random field. J Stat Phys 72, 1227–1304 (1993). https://doi.org/10.1007/BF01048187

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01048187

Key words

Navigation