Skip to main content
Log in

Critical behavior of the aperiodic quantum Ising chain in a transverse magnetic field

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the quantum spin-1/2 Ising chain in a uniform transverse magnetic field, with an aperiodic sequence of ferromagnetic exchange couplings. This system is a limiting anisotropic case of the classical two-dimensional Ising model with an arbitrary layered modulation. Its formal solution via a Jordan-Wigner transformation enables us to obtain a detailed description of the influence of the aperiodic modulation on the singularity of the ground-state energy at the critical point. The key concept is that of thefluctuation of the sums of any number of consecutive couplings at the critical point. When the fluctuation isbounded, the model belongs to the “Onsager universality class” of the uniform chain. The amplitude of the logarithmic divergence in the specific heat is proportional to the velocity of the fermionic excitations, for which we give explicit expressions in most cases of interest, including the periodic and quasiperiodic cases, the Thue-Morse chain, and the random dimer model. When the couplings exhibit anunbounded fluctuation, the critical singularity is shown to be generically similar to that of the disordered chain: the ground-state energy has finite derivatives of all orders at the critical point, and an exponentially small singular part, for which we give a quantitative estimate. In themarginal case of a logarithmically divergent fluctuation, e.g., for the period-doubling sequence or the circle sequence, there is a negative specific heat exponentα, which varies continuously with the strength of the aperiodic modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Janssen and J. Los,Phase Transitions 32:29 (1991).

    Google Scholar 

  2. H. Hiramoto and M. Kohmoto,Int. J. Mod. Phys. B 6:281 (1992).

    Google Scholar 

  3. J. Bellissard, A. Bovier, and J. M. Ghez,Rev. Math. Phys. 4:1 (1992).

    Google Scholar 

  4. J. Bellissard, inFrom Number Theory to Physics, M. Waldschmidt, P. Moussa, J. M. Luck, and C. Itzykson, eds. (Springer, Berlin, 1992).

    Google Scholar 

  5. J. M. Luck,Phys. Rev. B 39:5834 (1989).

    Google Scholar 

  6. E. Lieb, T. Schultz, and D. Mattis,Ann. Phys. 16:407 (1961).

    Google Scholar 

  7. M. Suzuki,Phys. Lett. 34A:94 (1971); S. Krinsky,Phys. Lett. 39A:169 (1972); E. Fradkin and L. Susskind,Phys. Rev. D 17:2637 (1978).

    Google Scholar 

  8. L. Onsager,Phys. Rev. 65:117 (1944).

    Google Scholar 

  9. B. M. McCoy and T. T. Wu,Phys. Rev. Lett. 21:549 (1968);Phys. Rev. 176:631 (1968); B. M. McCoy,Phys. Rev. B 2:2795 (1970).

    Google Scholar 

  10. B. M. McCoy and T. T. Wu,The 2D Ising Model (Harvard University Press, Cambridge, Massachusetts, 1973).

    Google Scholar 

  11. H. Au-Yang and B. M. McCoy,Phys. Rev. B 10:886 (1974).

    Google Scholar 

  12. Th. M. Nieuwenhuizen and H. Orland,Phys. Rev. B 40:5094 (1989).

    Google Scholar 

  13. A. B. Harris,J. Phys. C 7:1671 (1974).

    Google Scholar 

  14. S. Aubry,J. Phys. (Paris)44:147 (1983).

    Google Scholar 

  15. C. Godrèche, J. M. Luck, and F. Vallet,J. Phys. A 20:4483 (1987).

    Google Scholar 

  16. S. Aubry, C. Godrèche, and J. M. Luck,Europhys. Lett. 4:639 (1987).

    Google Scholar 

  17. S. Aubry, C. Godrèche, and J. M. Luck,J. Stat. Phys. 51:1033 (1988).

    Google Scholar 

  18. M. M. Doria and I. I. Satija,Phys. Rev. Lett. 60:444 (1988).

    Google Scholar 

  19. C. A. Tracy,J. Stat. Phys. 51:481 (1988).

    Google Scholar 

  20. H. A. Ceccatto,Phys. Rev. Lett. 62:203 (1989).

    Google Scholar 

  21. V. Benza,Europhys. Lett. 8:321 (1989).

    Google Scholar 

  22. F. Igloi,J. Phys. A 21:L911 (1988).

    Google Scholar 

  23. I. I. Satija and M. M. Doria,Phys. Rev. B 38:5174 (1988);39:9757 (1989).

    Google Scholar 

  24. H. A. Ceccatto,Z. Phys. B 75:253 (1989).

    Google Scholar 

  25. M. M. Doria, F. Nori, and I. I. Satija,Phys. Rev. B 39:6802 (1989).

    Google Scholar 

  26. Z. Lin and R. Tao,Phys. Lett. A 150:11 (1990);J. Phys. A 25:2483 (1992).

    Google Scholar 

  27. J. Q. You, X. Zeng, T. Xie, and J. R. Yan,Phys. Rev. B 44:713 (1991).

    Google Scholar 

  28. M. Henkel and A. Patkos,J. Phys. A 25:5223 (1992).

    Google Scholar 

  29. W. Deng, Y. Liu, D. Zheng, and C. Gong,J. Phys. A 25:4757 (1992).

    Google Scholar 

  30. C. A. Tracy,J. Phys. A 21:L603 (1988).

    Google Scholar 

  31. V. Benza, M. Kolar, and M. K. Ali,Phys. Rev. B 41:9578 (1990).

    Google Scholar 

  32. A. Erdélyi, ed.,Higher Transcendental Functions, 3 vols. (McGraw-Hill, New York, 1953).

    Google Scholar 

  33. Th. M. Nieuwenhuizen,Physica 113A:173 (1982).

    Google Scholar 

  34. B. Derrida and E. Gardner,J. Phys. (Paris)45:1283 (1984).

    Google Scholar 

  35. Ph. Bougerol and J. Lacroix,Products of Random Matrices, with Applications to Schrödinger Operators (Birkhäuser, Boston, 1985).

    Google Scholar 

  36. J. M. Luck,Systèmes Désordonnés Unidimensionnels (Collection Aléa, Saclay, 1992).

    Google Scholar 

  37. F. Dyson,Phys. Rev. 92:1331 (1953).

    Google Scholar 

  38. J. P. Bouchaud, A. Comtet, A. Georges, and P. Le Doussal,Ann. Phys. 201:285 (1990).

    Google Scholar 

  39. Th. M. Nieuwenhuizen,Physica 167A:43 (1990).

    Google Scholar 

  40. J. P. Clerc, G. Giraud, J. M. Laugier, and J. M. Luck,Adv. Phys. 39:191 (1990).

    Google Scholar 

  41. N. G. de Bruijn,Ned. Akad. Wet. Proc. A 43:39 (1981); M. Duneau and A. Katz,Phys. Rev. Lett. 54:2688 (1985);J. Phys. (Paris)47:181 (1986); V. Elser,Phys. Rev. B 32:4892 (1985); P. A. Kalugin, A. Yu. Kitayev, and L. S. Levitov,J. Phys. Lett. (Paris)46:L601 (1985);JETP Lett. 41:145 (1985).

    Google Scholar 

  42. H. Kesten,Acta Arith. 12:193 (1966).

    Google Scholar 

  43. L. Kuipers and H. Niederreiter,Uniform Distribution of Sequences (Wiley, New York, 1974).

    Google Scholar 

  44. M. Queffélec,Substitution Dynamical Systems. Spectral Analysis (Springer, Berlin, 1987).

    Google Scholar 

  45. C. Godrèche and J. M. Luck,Phys. Rev. B 45:176 (1992).

    Google Scholar 

  46. C. Godrèche and F. Lançon,J. Phys. I (Paris)2:207 (1992).

    Google Scholar 

  47. E. Bombieri and J. E. Taylor,J. Phys. (Paris)C3:19 (1987);Contemp. Math. 64:241 (1987).

    Google Scholar 

  48. C. Godrèche and J. M. Luck,J. Phys. A 23:3769 (1990).

    Google Scholar 

  49. J. M. Luck, C. Godrèche, A. Janner, and T. Janssen,J. Phys. A 26 (1993).

  50. C. Pisot,Ann. Scuola Norm. Sup. Pisa 7:205 (1938).

    Google Scholar 

  51. J. W. S. Cassels,An Introduction to Diophantine Approximation (Cambridge University Press, Cambridge, 1957).

    Google Scholar 

  52. J. M. Dumont, inNumber Theory and Physics, J. M. Luck, P. Moussa, and M. Waldschmidt, eds. (Springer, Berlin, 1990), and references quoted therein.

    Google Scholar 

  53. P. Collet and J. P. Eckmann,Iterated Maps on the Interval as Dynamical Systems (Birkhäuser, Boston, 1980).

    Google Scholar 

  54. R. B. Griffiths,Phys. Rev. Lett. 23:17 (1969).

    Google Scholar 

  55. Th. M. Nieuwenhuizen,Phys. Rev. Lett. 63:1760 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luck, J.M. Critical behavior of the aperiodic quantum Ising chain in a transverse magnetic field. J Stat Phys 72, 417–458 (1993). https://doi.org/10.1007/BF01048019

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01048019

Key words

Navigation