Skip to main content
Log in

Thermodynamics of the Spin-1/2 Heisenberg–Ising Chain at High Temperatures: a Rigorous Approach

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This work develops a rigorous setting allowing one to prove several features related to the behaviour of the Heisenberg–Ising (or XXZ) spin-1/2 chain at finite temperature T. Within the quantum inverse scattering method the physically pertinent observables at finite T, such as the per-site free energy or the correlation length, have been argued to admit integral representations whose integrands are expressed in terms of solutions to auxiliary non-linear integral equations. The derivation of such representations was based on numerous conjectures: the possibility to exchange the infinite volume and the infinite Trotter number limits, the existence of a real, non-degenerate, maximal in modulus Eigenvalue of the quantum transfer matrix, the existence and uniqueness of solutions to the auxiliary non-linear integral equations, as well as the possibility to take the infinite Trotter number limit on their level. We rigorously prove all these conjectures for temperatures large enough. As a by product of our analysis, we obtain the large-T asymptotic expansion for a subset of sub-dominant Eigenvalues of the quantum transfer matrix and thus of the associated correlation lengths. This result was never obtained previously, not even on heuristic grounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. While we make the choice of such a prescription, it is not so relevant in that the choice of any boundary value would still lead to the same definition of \(\widehat{\mathfrak {a}}\).

  2. In principle, degeneracies of \(|\widehat{\Lambda }_a|\) may occur and then the choice of the ordering for the various Eigenvalues with fixed modulus is taken in the direction of increasing arguments, with \(\mathrm {arg} \in [ -\pi \,; \pi [ \).

  3. The class \(\mathcal {C}^{\epsilon }_{\alpha , \varrho }\) is defined in Definition 5.1.

  4. To be precise, they are slightly away from \(\pm \mathrm i\); they are at \(\pm 1.00000000629\cdots \mathrm i\).

References

  1. Albertini, G., Dasmahapatra, S., McCoy, B.M.: Spectrum and completeness of the integrable 3-state Potts model: a finite size study. Int. J. Mod. Phys. A 7, 1–53 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bethe, H.: Zur Theorie der Metalle: Eigenwerte und Eigenfunktionen der linearen Atomkette. Z. Phys. 71, 205–226 (1931)

    Article  ADS  Google Scholar 

  3. Brézin, F.A., Pohil, G.P., Finkelberg, V.M.: The Schrödinger equation for a system of one-dimensional particles with point interactions. Viestnik Moskovskogo Universitata 1, 21–28 (1964)

    Google Scholar 

  4. Caux, J.-S., Hagemans, R.: Deformed strings in the Heisenberg model. J. Phys. A: Math. Theor. 40, 14605–14647 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  5. Destri, C., de Vega, H.J.: New thermodynamic Bethe Ansatz equations without strings. Phys. Rev. Lett. 69, 2313–2317 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  6. Destri, C., de Vega, H.J.: Unified approach to thermodynamic Bethe Ansatz and finite size corrections for lattice models and field theories. Nucl. Phys. B 438, 413–454 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  7. Destri, C., Lowenstein, J.H.: Analysis of the Bethe Ansatz equations of the chiral invariant Gross–Neveu model. Nucl. Phys. B 205, 369–385 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  8. Dorey, P., Tateo, R.: Excited states by analytic continuation of TBA equations. Nucl. Phys. B 482, 639–659 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  9. Dorlas, T.C.: Orthogonality and completeness of the Bethe Ansatz eigenstates of the nonlinear Schrödinger model. Commun. Math. Phys. 154, 2, 347–376 (1993)

    Article  ADS  Google Scholar 

  10. Dorlas, T.C., Lewis, J.T., Pulé, J.V.: The Yang–Yang thermodynamic formalism and large deviations. Commun. Math. Phys. 124, 3, 365–402 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  11. Essler, F.H.L., Korepin, V.E., Schoutens, K.: Fine structure of the Bethe Ansatz for the spin-\(\frac{1}{2}\) Heisenberg XXX model. J. Phys. A: Math. Gen. 25, 4115–4126 (1992)

    Article  ADS  Google Scholar 

  12. Dugave, M., Göhmann, F., Kozlowski, K.K.: Thermal form factors of the XXZ chain and the large-distance asymptotics of its temperature dependent correlation functions. J. Stat. Mech. 1307, P07010 (2013)

    Article  MathSciNet  Google Scholar 

  13. Dugave, M., Göhmann, F., Kozlowski, K.K.: Low-temperature large-distance asymptotics of the transversal two-point functions of the XXZ chain. J. Stat. Mech. 1404, P04012 (2014)

    Article  MathSciNet  Google Scholar 

  14. Dugave, M., Göhmann, F., Kozlowski, K.K., Suzuki, J.: Thermal form factor approach to the ground-state correlation functions of the XXZ chain in the antiferromagnetic massive regime. J. Phys. A: Math. Theor. P. Kulish Meml. Spec. Issue 49, 394001 (2016)

    Article  MathSciNet  Google Scholar 

  15. Faddeev, L.D., Sklyanin, E.K., Takhtadzhan, L.A.: The quantum inverse scattering method. Teor. Math. Phys 40, 194 (1979)

    Google Scholar 

  16. Gaudin, M.: Thermodynamics of a Heisenberg-Ising ring for \(\Delta \ge 1\). Phys. Rev. Lett. 26, 1301–1304 (1971)

    Article  ADS  Google Scholar 

  17. Göhmann, F., Karbach, M., Klümper, A., Kozlowski, K.K., Suzuki, J.: Thermal form-factor approach to dynamical correlation functions of integrable lattice models. J. Stat. Mech. 113106 (2017). arXiv:1708.04062

  18. Göhmann, F., Klümper, A., Seel, A.: Integral representations for correlation functions of the XXZ chain at finite temperature. J. Phys. A: Math. Gen. 37, 7625–7652 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  19. Göhmann, F., Klümper, A., Seel, A.: Integral representations for the density matrix of the XXZ chain at finite temperatures. J. Phys. A: Math. Gen. 38, 1833–1842 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  20. Klümper, A.: Free energy and correlation lengths of quantum chains related to restricted solid-on-solid lattice models. Ann. der Physik 1, 540–553 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  21. Klümper, A.: Thermodynamics of the anisotropic spin-\(1/2\) Heisenberg chain and related quantum chains. Z. Phys. B: Cond. Mat. 91, 507–519 (1993)

    Article  ADS  Google Scholar 

  22. Koma, T.: Thermal Bethe-Ansatz method for the one-dimensional Heisenberg model. Prog. Theor. Phys. 78, 1213–1218 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  23. Koma, T.: Thermal Bethe-Ansatz method for the spin-\(1/2\) XXZ Heisenberg model. Prog. Theor. Phys. 81, 783–809 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  24. Lewis, J.T., Pulé, J.V., Zagrebnov, V.A.: The large deviation principle for the Kac distribution. Helv. Phys. Acta 61, 1063–1078 (1988)

    MathSciNet  Google Scholar 

  25. Lieb, E.H., Liniger, W.: Exact analysis of an interacting Bose gas. I. The general solution and the ground state. Phys. Rev. 130, 1605–1616 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  26. Mukhin, E., Tarasov, V., Varchenko, A.: Bethe algebra of homogeneous XXX Heisenberg model has simple spectrum. Commun. Math. Phys. 288, 1, 1–42 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  27. Rojas, O., de Souza, S.M., Thomasz, M.T.: High temperature expansion for a chain model. J. Math. Phys. 43, 1390–1407 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  28. Ruelle, D.: Statistical Mechanics: Rigorous Results. Benjamin Inc, San Francisco (1969)

    MATH  Google Scholar 

  29. Shiroishi, M., Takahashi, M.: Integral equation generates high temperature expansion of the Heisenberg chain. Phys. Rev. Lett. 89, 117201 (2002)

    Article  ADS  Google Scholar 

  30. Sogo, K.: Ground state and low-lying excitations in the Heisenberg XXZ chain of arbitrary spin S. Phys. Lett. 104 A, 51–54 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  31. Sogo, K., Wadati, M.: Quantum inverse scattering method and Yang–Baxter relation for integrable spin systems. Prog. Theor. Phys. 68, 85–97 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  32. Suzuki, J., Akutsu, Y., Wadati, M.: A new approach to quantum spin chains at finite temperature. J. Phys. Soc. Jpn. 59, 2667–2680 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  33. Suzuki, M.: Transfer-matrix methods and Monte Carlo simulation in quantum spin systems. Phys. Rev. B 31, 2957–2965 (1985)

    Article  ADS  Google Scholar 

  34. Suzuki, M., Inoue, M.: The ST-transformation approach to analytic solutions of quantum systems. I: General formulations and basic limit theorems. Prog. Theor. Phys. 78, 787–799 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  35. Takahashi, M.: One-dimensional Heisenberg model at finite temperature. Prog. Theor. Phys. 42, 1289 (1971)

    Google Scholar 

  36. Takahashi, M.: Correlation length and free energy of the \(S={1}/{2}\) XXZ chain in a magnetic field. Phys. Rev. B 44, 12382–12394 (1991)

    Article  ADS  Google Scholar 

  37. Takahashi, M.: Simplification of thermodynamic Bethe–Ansatz equations. In: Kirillov, A.K., Liskova, N. (eds.) Physics and Combinatorics, pp. 299–304. World Scientific, Singapore (2001)

    Chapter  Google Scholar 

  38. Yang, C.N., Yang, C.P.: Thermodynamics of a one-dimensional system of bosons with repulsive delta-interactions. J. Math. Phys. 10, 1115–1122 (1969)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Patrick Dorey, Andreas Klümper and Eric Vernier for stimulating discussions. The work of FG was supported by the Deutsche Forschungsgemeinschaft within the framework of the research unit FOR 2316. The work of SG and KKK was supported by the CNRS, Projet international de coopération scientifique No. PICS07877: Fonctions de corrélations dynamiques dans la chaîne XXZ à température finie, Allemagne, 2018–2020. JS was supported by JSPS KAKENHI Grants Numbers 15K05208, 18K03452 and 18H01141.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karol K. Kozlowski.

Additional information

Communicated by P. Zinn-Justin

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Göhmann, F., Goomanee, S., Kozlowski, K.K. et al. Thermodynamics of the Spin-1/2 Heisenberg–Ising Chain at High Temperatures: a Rigorous Approach. Commun. Math. Phys. 377, 623–673 (2020). https://doi.org/10.1007/s00220-020-03749-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03749-6

Navigation