Skip to main content
Log in

Distribution functions for fluids in random media

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A random medium is considered, composed of identifiable interactive sites or obstacles equilibrated at a high temperature and then quenched rapidly to form a rigid structure, statistically homogeneous on all but molecular length scales. The equilibrium statistical mechanics of a fluid contained inside this quenched medium is discussed. Various particle-particle and particle-obstacle correlation functions, which differ from the corresponding functions for a fully equilibrated binary mixture, are defined through an averaging process over the static ensemble of obstacle configurations and application of topological reduction techniques. The Ornstein-Zernike equations also differ from their equilibrium counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-P. Hansen and I. R. McDonald,Theory of Simple Liquids (Academic Press, London, 1976).

    Google Scholar 

  2. H. L. Friedman,A Course in Statistical Mechanics (Prentice-Hall, Englewood Cliffs, New Jersey, 1985).

    Google Scholar 

  3. G. Stell, inThe Equilibrium Theory of Classical Fluids, H. L. Frisch and J. L. Lebowitz, eds. (Benjamin, New York, 1964), p. 11–171.

    Google Scholar 

  4. J. K. Percus, inThe Equilibrium Theory of Classical Fluids, H. L. Frisch and J. L. Lebowitz, eds. (Benjamin, New York, 1964), p. 11–33.

    Google Scholar 

  5. H. L. Frisch,Trans. Rheol. Soc. 9:293 (1965).

    Google Scholar 

  6. S. Torquato and G. Stell,J. Chem. Phys. 77:2071 (1983).

    Google Scholar 

  7. S. Torquato and G. Stell,J. Chem. Phys. 78:3262 (1983).

    Google Scholar 

  8. S. Torquato and G. Stell,J. Chem. Phys. 79:1505 (1983).

    Google Scholar 

  9. S. Torquato and G. Stell,J. Chem. Phys. 80:878 (1984);81:980 (1985).

    Google Scholar 

  10. G. Stell, inStudies in Statistical Mechanics, Vol. 12, J. L. Lebowitz, ed. (North-Holland, Amsterdam, 1985).

    Google Scholar 

  11. T. Morita and K. Hiroike,Prog. Theor. Phys. 25:537 (1961).

    Google Scholar 

  12. H. C. Andersen, inStatistical Mechanics, Part A, B. J. Berne, ed. (Plenum, New York, 1977).

    Google Scholar 

  13. L. S. Ornstein and F. Zernike,Proc. Acad. Sci. (Amsterdam) 17:793 (1914).

    Google Scholar 

  14. G. Stell, inPhase Transitions and Critical Phenomena, Vol. 5B, C. Domb and M. S. Green, eds. (Academic Press, London, 1975).

    Google Scholar 

  15. J. E. Mayer and E. Montroll,J. Chem. Phys. 9:2 (1941).

    Google Scholar 

  16. S. Torquato,J. Stat. Phys. 45:843 (1986).

    Google Scholar 

  17. B. Widom and J. S. Rowlinson,J. Chem. Phys. 52:1670 (1970).

    Google Scholar 

  18. E. H. Hauge, inTransport Phenomena, G. Kirczenow and J. Marro, eds. (Springer, Berlin, 1974).

    Google Scholar 

  19. M. H. Ernst, inRecent Developments in Nonequilibrium Thermodynamics, J. Casas-Vázquez, D. Jou, and J. M. Rubi, eds. (Springer, Berlin, 1986).

    Google Scholar 

  20. H. L. Weissberg,J. Appl. Phys. 34:2636 (1963).

    Google Scholar 

  21. M. C. Goh, W. I. Goldburg, and C. M. Knobler,Phys. Rev. Lett. 58:1008 (1987).

    Google Scholar 

  22. D. Chandler and H. C. Andersen,J. Chem. Phys. 57:1930 (1972).

    Google Scholar 

  23. J. G. Curro and K. S. Schweizer,Macromolecules 20:1928 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madden, W.G., Glandt, E.D. Distribution functions for fluids in random media. J Stat Phys 51, 537–558 (1988). https://doi.org/10.1007/BF01028471

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01028471

Key words

Navigation