Skip to main content
Log in

The generating functional for the probability density functions of Navier-Stokes turbulence

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A generating functional for the equal-time spatial probability density functions which represent the ensemble of turbulent incompressible Navier-Stokes fluids is introduced. By formally solving the linear evolution equation satisfied by this functional, the probability densities are represented as functional integrals. It is shown that the generating functional can be regarded as the space characteristic functional of a generalized random field defined on the phase space spanned by the material position and velocity fields of a fluid particle. The interpretation of this random field, which satisfies a dynamical equation similar to Vlasov's, is clarified through the formal analogies between the statistics of molecules and fluid particles at the functional level. A class of statistically realizable and solvable models is also considered within the context of the present formalism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. S. Lundgren,Phys. Fluids 10:969 (1967).

    Google Scholar 

  2. A. S. Monin,Sov. Phys. Doklady 12:1113 (1968).

    Google Scholar 

  3. E. A. Novikov,Sov. Phys. Doklady 12:1006 (1968).

    Google Scholar 

  4. A. Monin and A. M. Yaglom,Statistical Fluids Mechanics: Mechanics of Turbulence Vol.2 (MIT Press, Cambridge, Massachusetts, 1975).

    Google Scholar 

  5. F. R. Ulinich and B. Ya. Lyubinov,Sov. Phys. JETP 28:494 (1968).

    Google Scholar 

  6. T. S. Lundgren,Phys. Fluids 12:485 (1969).

    Google Scholar 

  7. T. S. Lundgren, inStatistical Models in Turbulence, M. Rosenblatt and C. Van Atta, eds. (Springer, New York, 1971).

    Google Scholar 

  8. R. L. Fox,Phys. Fluids 14:1806 (1971).

    Google Scholar 

  9. N. N. Bogolyubov, inStudies in Statistical Mechanics, Vol. 1, J. de Boer and G. Uhlenbeck, eds. (North-Holland, Amsterdam, 1962).

    Google Scholar 

  10. E. Hopf,J. Rat. Mech. Anal. 1:87 (1952).

    Google Scholar 

  11. C. Foias and R. Temam,Ind. Univ. Math. J. 29:913 (1980).

    Google Scholar 

  12. I. M. Gelfand and N. Ya. Vilenkin,Generalized Functions: Applications of Harmonic Analysis, vol. 4 (Academic Press, New York, 1964).

    Google Scholar 

  13. M. Henon,Astron. Astrophys. 114:211 (1982).

    Google Scholar 

  14. G. Rosen,Phys. Fluids 3:519, 525 (1959).

    Google Scholar 

  15. R. P. Feynman,Phys. Rev. 84:108 (1951).

    Google Scholar 

  16. Yu. L. Klimontovich,The Statistical Theory of Non-Equilibrium Processes in a Plasma (Pergamon, London, 1967).

    Google Scholar 

  17. T. Nakayama and J. M. Dawson,J. Math. Phys. 8:553 (1967).

    Google Scholar 

  18. N. N. Bogolyubov, Jr., and A. K. Prikarpatskii,Sov. J. Part. Nucl. 17:351 (1986).

    Google Scholar 

  19. I. Hosokawa,J. Math. Phys. 8:221 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alankus, T. The generating functional for the probability density functions of Navier-Stokes turbulence. J Stat Phys 53, 1261–1271 (1988). https://doi.org/10.1007/BF01023868

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01023868

Key words

Navigation