Skip to main content
Log in

Long-time turbulence model deduced from the Navier-Stokes equations

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

The author shows the existence of long-time averages to turbulent solutions of the Navier-Stokes equations and determines the equations satisfied by them, involving a Reynolds stress that is shown to be dissipative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amrouche, C. and Girault, V., On the existence and regularity of the solutions of Stokes problem in arbitrary dimension, Proc. Japan Acad., 67(5), 1991, 171–175.

    Article  MathSciNet  MATH  Google Scholar 

  2. Batchelor, G. K., An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, 1967.

    MATH  Google Scholar 

  3. Boussinesq, J., Essai sur la théorie des eaux courantes, Mémoires Présentés par Divers Savants à l’Académie des Sciences, 23(1), 1877, 1–660.

    Google Scholar 

  4. Caffarelli, L., Kohn, R. and Nirenberg, L., Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35(5–6), 1982. 771–831.

    Article  MathSciNet  MATH  Google Scholar 

  5. Chácon Rebollo, T. and Lewandowski, R., Mathematical and Numerical Foundations of Turbulence Models and Applications, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser, Basel; Springer-Verlag, New York, 2014.

    Google Scholar 

  6. Hopf, E., Ber die Anfangswertaufgabe fr die hydrodynamischen Grundgleichungen, Math. Nachr., 4, 1951, 213–231 (in German).

    Article  MathSciNet  MATH  Google Scholar 

  7. Kolmogorov, A. N., The local structure of turbulence in incompressible viscous fluids for very large Reynolds number, Dokl. Akad. Nauk SSR, 30, 1941, 9–13.

    Google Scholar 

  8. Girault, V. and Raviart, P. A., Finite Element Approximation of the Navier-Stokes Equations, Springer-Verlag, Berlin, 1979.

    Book  MATH  Google Scholar 

  9. Feireisl, E., Dynamics of Viscous Incompressible Fluids, Oxford University Press, Oxford, 2004.

    Google Scholar 

  10. Layton, W., The 1877 Boussinesq conjecture: Turbulent fluctuation are dissipative on the mean flow, 2014. to appear.

    Google Scholar 

  11. Leray, J., Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Mathematica, 63, 1934, 193–248.

    Article  MathSciNet  MATH  Google Scholar 

  12. Lions, J. L., Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Paris, 1969.

    MATH  Google Scholar 

  13. Prandtl, L., Über die ausgebildeten Turbulenz, Zeitschrift für Angewandte Mathematik und Mechanik, 5, 1925, 136–139 (in German).

    MATH  Google Scholar 

  14. Reynolds, O., An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels, Philosophical Transactions of the Royal Society, 174, 1883, 935–982.

    Article  MATH  Google Scholar 

  15. Ruelle, D., Chance and Chaos, Princeton University Press, Princeton, 1991.

    Google Scholar 

  16. Sobolev, V. I., Bochner integral, Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer-Verlag, New York, 2001.

    Google Scholar 

  17. Stokes, G., On the effect of the internal friction of fluids on the motion of pendulums, Transactions of the Cambridge Philosophical Society, 9, 1851, 8–106.

    Google Scholar 

  18. Tartar, L., An introduction to Navier-Stokes equation and oceanography, Lecture Notes of the Unione Matematica Italiana, 1, Springer-Verlag, Berlin; UMI, Bologna, 2006.

    Book  Google Scholar 

  19. Tartar, L., An introduction to Sobolev spaces and interpolation spaces, Lecture Notes of the Unione Matematica Italiana, 3, Springer-Verlag, Berlin; UMI, Bologna, 2007.

    Google Scholar 

  20. Taylor, G. I., Statistical theory of turbulence, Part I-IV, Proc. Roy. Soc. A., 151, 1935, 421–478.

    Article  MATH  Google Scholar 

  21. Temam, R., Navier-Stokes Equations, Theory and Numerical Analysis, Reprint of the 1984 Edition, A. M. S. Chelsea Publishing, Providence, RI, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Lewandowski.

Additional information

In Honor of the Scientific Contributions of Professor Luc Tartar

This work was supported by ISFMA, Fudan University, China, and CNRS, France.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lewandowski, R. Long-time turbulence model deduced from the Navier-Stokes equations. Chin. Ann. Math. Ser. B 36, 883–894 (2015). https://doi.org/10.1007/s11401-015-0982-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-015-0982-9

Keywords

2000 MR Subject Classification

Navigation