Skip to main content
Log in

Reformulation of the path probability method and its application to crystal growth models

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The microscopic master equation of a system is derived within the framework of the path probability method (PPM). Then, by extending Morita's method in equilibrium statistical mechanics, the path probability function constructed microscopically can be systematically decomposed to result in the conventional path probability function of cluster approximation when correlations larger than the chosen basic cluster are neglected. In order to critically compare the master equation method with the PPM, the triangle approximation is treated by both methods for crystal growth models. It is found that the PPM gives physically satisfactory kinetic equations, while the master equation (supplemented with a cluster probability in the superposition approximation) does not. The triangle PPM calculation considerably improves the result of the pair approximation for crystal growth velocity in the solid-on-solid model, and compares well with Monte Carlo results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Kikuchi,Ann. Phys. 10:127 (1960);Phys. Rev. 124:1682, 1691 (1961);Prog. Theor. Phys. (Kyoto)Suppl. 35:1 (1966).

    Google Scholar 

  2. R. Kikuchi,Phys. Rev. 81:988 (1951).

    Google Scholar 

  3. A. Suzuki, H. Sato, and R. Kikuchi,Phys. Rev. B 29:3550 (1984); Y. Ozeki and T. Ishikawa,J. Phys. Soc. Japan 55:3931 (1986); T. Ishii, H. Sato, and R. Kikuchi,Phys. Rev. B 34:8335 (1986).

    Google Scholar 

  4. C. M. Van Baal,Physica 111A:591 (1982);129A:601 (1985).

    Google Scholar 

  5. Y. Saito and R. Kubo,J. Stat. Phys. 15:233 (1976).

    Google Scholar 

  6. T. Ishikawa, K. Wada, H. Sato, and R. Kikuchi,Phys. Rev. A 33:4164 (1986); K. Wada, T. Ishikawa, H. Sato, and R. Kikuchi,Phys. Rev. A 33:4171 (1986).

    Google Scholar 

  7. Y. Saito and H. Müller-Krumbhaar,J. Chem. Phys. 70:1079 (1979).

    Google Scholar 

  8. T. Morita,J. Phys. Soc. Japan 12:753;J. Math. Phys. 13:115 (1972).

    Google Scholar 

  9. D. E. Temkin,Sov. Phys. Crystallogr. 14:344 (1969).

    Google Scholar 

  10. A. J. Schlijper,Phys. Rev. B 27:6841 (1983); G. An, private communication (1988).

    Google Scholar 

  11. K. Wada, T. Ishikawa, and H. Tsuchinaga,Physica 142A:38 (1987).

    Google Scholar 

  12. R. Kikuchi,Phys. Rev. B 22:3784 (1980).

    Google Scholar 

  13. R. Kikuchi,J. Chem. Phys. 41:1653 (1967).

    Google Scholar 

  14. N. G. van Kampen,Can. J. Phys. 39:551 (1961).

    Google Scholar 

  15. K. Wada, H. Tsuchinaga, and T. Uchida, inProceedings of “Dynamics of Ordering Processes in Condensed Matter,” Kyoto, Japan (1987), to be published.

  16. G. H. Gilmer and P. Bennema,J. Appl. Phys. 43:1347 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wada, K., Kaburagi, M., Uchida, T. et al. Reformulation of the path probability method and its application to crystal growth models. J Stat Phys 53, 1081–1101 (1988). https://doi.org/10.1007/BF01023859

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01023859

Key words

Navigation