Skip to main content
Log in

Nonlinear neural networks. I. General theory

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A neural network is called nonlinear if the introduction of new data into the synaptic efficacies has to be performed through anonlinear operation. The original Hopfield model is linear, whereas, for instance, clipped synapses constitute a nonlinear model. Here a general theory is presented to obtain the statistical mechanics of a neural network with finitely many patterns and arbitrary (symmetric) nonlinearity. The problem is reduced to minimizing a free energy functional over all solutions of a fixed-point equation with synaptic kernelQ. The case of clipped synapses with bimodal and Gaussian probability distribution is analyzed in detail. To this end, a simple theory is developed that gives the spectrum ofQ and thereby all the solutions that bifurcate from the high-temperature phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. Hopfield,Proc. Natl. Acad. Sci. USA 79:2554 (1982);81:3088 (1984).

    Google Scholar 

  2. W. A. Little,Math. Biosci. 19:101 (1974); W. A. Little and G. L. Shaw,Math. Biosci. 39:281 (1978).

    Google Scholar 

  3. P. Peretto,Biol. Cybernet. 50:51 (1984).

    Google Scholar 

  4. G. Toulouse, S. Dehaene, and J.-P. Changeux,Proc. Natl. Acad. Sci. USA 83:1695 (1986).

    Google Scholar 

  5. J. J. Hopfield and D. W. Tank,Biol. Cybernet. 52:141 (1985).

    Google Scholar 

  6. W. A. McCulloch and W. Pitts,Math. Biophys. 5:115 (1943).

    Google Scholar 

  7. K. Binder, inMonte Carlo Methods in Statistical Physics, by K. Binder, ed. (Springer, New York, 1979), p. 145.

    Google Scholar 

  8. A. C. D. van Enter and J. L. van Hemmen,Phys. Rev. A 29:355 (1984).

    Google Scholar 

  9. D. O. Hebb,The Organization of Behavior (Wiley, New York, 1949).

    Google Scholar 

  10. J. L. van Hemmen and R. Kühn,Phys. Rev. Lett. 57:913 (1986); J. L. van Hemmen,Phys. Rev. A 36:1959 (1987).

    Google Scholar 

  11. H. Sompolinsky,Phys. Rev. A 34:2571 (1986).

    Google Scholar 

  12. D. J. Amit, H. Gutfreund, and H. Sompolinsky,Phys. Rev. Lett. 55:1530 (1985);Ann. Phys. 173:30 (1987).

    Google Scholar 

  13. D. J. Amit, H. Outfreund, and H. Sompolinsky,Phys. Rev. A 32:1007 (1985).

    Google Scholar 

  14. W. Kinzel,Z. Phys. B 60:205 (1985).

    Google Scholar 

  15. J. J. Hopfield, inModelling and Analysis in Biomedicine, C. Nicolini, ed. (World Scientific, Singapore, 1984), pp. 369–389, in particular p. 381.

    Google Scholar 

  16. G. Parisi,J. Phys. A: Math. Gen. 19:L617 (1986).

    Google Scholar 

  17. J. P. Nadal, G. Toulouse, J.-P. Changeux, and S. Dehaene,Europhys. Lett. 1:535 (1986).

    Google Scholar 

  18. J. L. van Hemmen, D. Grensing, A. Huber, and R. Kühn,J. Stat. Phys., this issue, following paper.

  19. J. L. van Hemmen, D. Grensing, A. Huber, and R. Kühn,Z. Phys. B 65:53 (1986).

    Google Scholar 

  20. H. E. Stanley,Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, Oxford, 1971), Section 6.5.

    Google Scholar 

  21. J. L. van Hemmen,Phys. Rev. Lett. 49:409 (1982); inLecture Notes in Physics, No. 192 (1983), pp. 203–233, in particular the Appendix.

    Google Scholar 

  22. D. Grensing and R. Kühn,J. Phys. A: Math. Gen. 19:L1153 (1986).

    Google Scholar 

  23. J. Lamperti,Probability (Benjamin, New York, 1966), Section 7.

    Google Scholar 

  24. R. B. Griffiths, Chi-Yuan Weng, and J. S. Langer,Phys. Rev. 149:301 (1966).

    Google Scholar 

  25. J. L. van Hemmen,Phys. Rev. A 34:3435 (1986).

    Google Scholar 

  26. A. Erdélyiet al., Higher Transcendental Functions, Vol. 2 (McGraw-Hill, New York, 1953), Chapter XI, in particular pp. 232–251.

    Google Scholar 

  27. J. L. van Hemmen and A. C. D. van Enter,Phys. Rev. A 34:2509 (1986), in particular the Appendix.

    Google Scholar 

  28. M. Abramowitz and I. A. Stegun (eds.),Handbook of Mathematical Functions (Dover, New York, 1965), Section 24.1.1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Hemmen, J.L., Grensing, D., Huber, A. et al. Nonlinear neural networks. I. General theory. J Stat Phys 50, 231–257 (1988). https://doi.org/10.1007/BF01022994

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01022994

Key words

Navigation