Skip to main content
Log in

Microscopic selection principle for a diffusion-reaction equation

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider a model of stochastically interacting particles on ℤ, where each site is assumed to be empty or occupied by at most one particle. Particles jump to each empty neighboring site with rateγ/2 and also create new particles with rate 1/2 at these sites. We show that as seen from the rightmost particle, this process has precisely one invariant distribution. The average velocity of this particle V(γ) then satisfiesγ −1/2V(γ)→\(\sqrt 2 \) asγ→∞. This limit corresponds to that of the macroscopic density obtained by rescaling lengths by a factorγ 1/2 and lettingγ→∞. This density solves the reaction-diffusion equation\(u_t = \tfrac{1}{2}u_{xx} + u(1 - u)\), and under Heaviside initial data converges to a traveling wave moving at the same rate\(\sqrt 2 \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. De Masi, N. Ianiro, A. Pellegrinotti, and E. Presutti, A survey of the hydrodynamical behavior of many particle systems, inStudies in Statistical Mechanics, Vol. II, J. L. Lebowitz and E. W. Montroll, eds. (North-Holland, Amsterdam, 1984).

    Google Scholar 

  2. E. Presutti, Collective Phenomena in Stochastic Particle Systems, Proceedings, BiBOS Conference—Bielefeld.

  3. H. Spohn, Equilibrium fluctuation for some stochastic particle systems, inStatistical Physics and Dynamical Systems, J. Fritz, A. Jaffe, and D. Szàsz, eds. (Birkhäuser, Boston, 1985).

    Google Scholar 

  4. J. Fritz, The Euler equation for the stochastic dynamics of a one-dimensional continuous spin system, Preprint (1986).

  5. A. De Masi, P. Ferrari, and J. Lebowitz, Rigorous derivation of reaction-diffusion equation with fluctuations,Phys. Rev. Lett. 35:19 (1985).

    Google Scholar 

  6. A. De Masi, P. Ferrari, and J. Lebowitz, Reaction-diffusion equations for interacting particle systems,J. Stat. Phys 44:589 (1986).

    Google Scholar 

  7. R. A. Fisher, The advance of advantageous genes,Ann. Eugenics 7:355–369 (1937).

    Google Scholar 

  8. D. G. Aronson and H. F. Weinberger, Non linear diffusion in population genetics, combustion and nerve propagation, inPartial Differential Equations and Related Topics, J. Goldstein, ed. (Lecture Notes in Mathematics, No. 446, Springer, New York).

  9. A. Kolmogorov, I. Petrovskii, and N. Piscounov, Etudes de l'équations de la diffusion avec croissance de la quantité de matière et son application a un problème biologique,Bull. Univ. Mosc. Ser. Int. A 1(6):1–25.

  10. M. Bramson,Convergence of Solutions of the Kolmogorov Equation to Travelling Waves, Memoirs American Mathematical Society 285.

  11. H. P. McKean, Application of Brownian Motion to the Equation of Kolmogorov-Petrovskii-Piscounov,Commun. Pure Appl. Math. XXVIII:323–331.

  12. E. Ben Jacob, H. Brand, G. Dee, L. Kramer, and I. S. Langer, Pattern propagation in nonlinear dissipative systems,Physica 14D:348 (1985).

    Google Scholar 

  13. A. R. Kerstein, Computational study of propagating fronts in a lattice-gas model,J. Stat. Phys., this issue, preceding paper.

  14. L. M. Liggett,Interacting Particle Systems (Springer-Verlag, 1985).

  15. D. Griffeath,Additive and Cancellative Interacting Particle Systems (Springer Lecture Notes in Mathematics, 724).

  16. R. Durrett, Oriented percolation in two dimensions,Ann. Prob. 12:999 (1984).

    Google Scholar 

  17. M. Bramson, Maximal displacement of branching Brownian motion,Commun. Pure Appl. Math. 31:531–581.

  18. J. S. Langer, in Proceedings of the 1986 Les Houche summer school.

  19. J. P. Eckman, in Proceedings of the 1986 Les Houche summer school.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bramson, M., Calderoni, P., De Masi, A. et al. Microscopic selection principle for a diffusion-reaction equation. J Stat Phys 45, 905–920 (1986). https://doi.org/10.1007/BF01020581

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01020581

Key words

Navigation