Skip to main content
Log in

Microstructure characterization and bulk properties of disordered two-phase media

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A general formalism is developed to statistically characterize the microstructure of porous and other composite media composed of inclusions (particles) distributed throughout a matrix phase (which, in the case of porous media, is the void phase). This is accomplished by introducing a new and generaln-point distribution functionH n and by deriving two series representations of it in terms of the probability density functions that characterize the configuration of particles; quantities that, in principle, are known for the ensemble under consideration. In the special case of an equilibrium ensemble, these two equivalent but topologically different series for theH n are generalizations of the Kirkwood-Salsburg and Mayer hierarchies of liquid-state theory for a special mixture of particles described in the text. This methodology provides a means of calculating any class of correlation functions that have arisen in rigorous bounds on transport properties (e.g., conductivity and fluid permeability) and mechanical properties (e.g., elastic moduli) for nontrivial models of two-phase disordered media. Asymptotic and bounding properties of the general functionH n are described. To illustrate the use of the formalism, some new results are presented for theH n and it is shown how such information is employed to compute bounds on bulk properties for models of fully penetrable (i.e., randomly centered) spheres, totally impenetrable spheres, and spheres distributed with arbitrary degree of impenetrability. Among other results, bounds are computed on the fluid permeability, for assemblages of impenetrable as well as penetrable spheres, with heretofore unattained accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. F. Brown,J. Chem. Phys. 23:1514 (1955).

    Google Scholar 

  2. M. Beran,Nuovo Cimento 38:771 (1965).

    Google Scholar 

  3. G. W. Milton,J. Appl. Phys. 52:5294 (1981).

    Google Scholar 

  4. S. Torquato,J. Appl. Phys. 58:3790 (1985).

    Google Scholar 

  5. S. Prager,Phys. Fluids 4:1477 (1961).

    Google Scholar 

  6. J. G. Berryman and G. W. Milton,J. Chem. Phys. 83:754 (1985).

    Google Scholar 

  7. R. A. Reck and S. Prager,J. Chem. Phys. 42:3027 (1965).

    Google Scholar 

  8. M. Beran and J. Molyneux,Q. Appl. Math. 24:107 (1965).

    Google Scholar 

  9. J. J. McCoy,Recent Advances in Engineering 5 (Gordon and Breach, New York, 1970).

    Google Scholar 

  10. G. W. Milton and N. Phan-Thien,Proc. R. Soc. Lond. A 380:305 (1982).

    Google Scholar 

  11. S. Torquato and G. Stell,J. Chem. Phys. 77:2071 (1982).

    Google Scholar 

  12. S. Torquato and G. Stell,J. Chem. Phys. 78:3262 (1983).

    Google Scholar 

  13. H. L. Weissberg,J. Appl. Phys. 34:2636 (1963).

    Google Scholar 

  14. S. Torquato and G. Stell,J. Chem. Phys. 79:1505 (1983).

    Google Scholar 

  15. S. Torquato and G. Stell,J. Chem. Phys. 82:980 (1985).

    Google Scholar 

  16. S. Torquato,J. Chem. Phys. 84:6345 (1986).

    Google Scholar 

  17. M. Doi,J. Phys. Soc. Japan 40:567 (1976).

    Google Scholar 

  18. H. L. Weissberg and S. Prager,Phys. Fluids 13:2958 (1970).

    Google Scholar 

  19. J. G. Berryman,J. Comput. Phys. 52:142 (1983).

    Google Scholar 

  20. J. G. Kirkwood and Z. W. Salsburg,Disc. Faraday Soc. 15:28 (1953).

    Google Scholar 

  21. J. E. Mayer and E. Montroll,J. Chem. Phys. 9:2 (1941).

    Google Scholar 

  22. H. Reiss, H. L. Frisch, and J. L. Lebowitz,J. Chem. Phys. 31:369 (1959).

    Google Scholar 

  23. L. Blum and G. Stell,J. Chem. Phys. 71:42 (1979);72:2212 (1980); J. J. Salacuse and G. Stell,J. Chem. Phys. 77:3714 (1982).

    Google Scholar 

  24. S. Torquato,J. Chem. Phys. 81:5079 (1984).

    Google Scholar 

  25. S. Torquato and G. Stell,J. Chem. Phys. 80:878 (1984).

    Google Scholar 

  26. Y. C. Chiew and E. D. Glandt,J. Colloid Interface Sci 99:86 (1984).

    Google Scholar 

  27. S. Baer and J. L. Lebowitz,J. Chem. Phys. 40:3474 (1964).

    Google Scholar 

  28. J. E. Mayer,J. Chem. Phys. 15:187 (1947).

    Google Scholar 

  29. P. A. Rikvold and G. Stell,J. Chem. Phys. 82:1014 (1985).

    Google Scholar 

  30. W. W. Yau, J. J. Kirkland, and D. D. Bly,Modern Size-Exclusion Liquid Chromatography (Wiley-Interscience, New York, 1979).

    Google Scholar 

  31. L. Verlet and J. J. Weis,Phys. Rev. A 5:939 (1972).

    Google Scholar 

  32. J. P. Hansen and I. R. McDonald,Theory of Simple Liquids (Academic Press, New York, 1976).

    Google Scholar 

  33. S. Torquato,J. Chem. Phys. 85:4622 (1986).

    Google Scholar 

  34. J. G. Berryman,Phys. Rev. A 27:1053 (1983).

    Google Scholar 

  35. J. D. Beasley and S. Torquato,J. Appl. Phys. 60:3576 (1986).

    Google Scholar 

  36. S. Torquato and F. Lado,Phys. Rev. B 33:6248 (1986).

    Google Scholar 

  37. S. Torquato and J. D. Beasley,Phys. Fluids, in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torquato, S. Microstructure characterization and bulk properties of disordered two-phase media. J Stat Phys 45, 843–873 (1986). https://doi.org/10.1007/BF01020577

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01020577

Key words

Navigation