Skip to main content
Log in

From equilibrium spin models to probabilistic cellular automata

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The general equivalence betweenD-dimensional probabilistic cellular automata (PCA) and (D+1)-dimensional equilibrium spin models satisfying a “disorder condition” is first described in a pedagogical way and then used to analyze the phase diagrams, the critical behavior, and the universality classes of some automata. Diagrammatic representations of time-dependent correlation functions of PCA are introduced. Two important classes of PCA are singled out for which these correlation functions simplify: (1) “Quasi-Hamiltonian” automata, which have a current-carrying steady state, and for which some correlation functions are those of aD-dimensional static model. PCA satisfying the detailed balance condition appear as a particular case of these rules for which the current vanishes. (2) “Linear” (and more generally “affine”) PCA for which the diagrammatics reduces to a random walk problem closely related to (D+1)-dimensional directed SAWs: both problems display a critical behavior with mean-field exponents in any dimension. The correlation length and effective velocity of propagation of excitations can be calculated for affine PCA, as is shown on an explicitD=1 example. We conclude with some remarks on nonlinear PCA, for which the diagrammatics is related to reaction-diffusion processes, and which belong in some cases to the universality class of Reggeon field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Kinzel,Z. Phys. B 58:29 (1985).

    Google Scholar 

  2. S. Wolfram,Theory and Applications of Cellular Automata (World Scientific, Singapore, 1986).

    Google Scholar 

  3. S. Wolfram,Rev. Mod. Phys. 55:601 (1983);Physica 10D:1 (1984).

    Google Scholar 

  4. J. Stephenson,J. Math. Phys. 11:420 (1970);Phys. Rev. B 1:4405 (1970);Can. J. Phys. 47:2621 (1969).

    Google Scholar 

  5. T. R. Welberry and G. H. Miller,Acta Cryst. A 34:120 (1978).

    Google Scholar 

  6. T. R. Welberry and R. Galbraith,J. Appl. Cryst. 6:87 (1973);8:636 (1975); T. R. Welberry,J. Appl. Cryst. 10:344 (1977).

    Google Scholar 

  7. I. G. Enting,J. Phys. C, Solid State Phys. 10:1379 (1977).

    Google Scholar 

  8. P. Rujan,J. Stat. Phys. 29:231, 247 (1982);34:615 (1984).

    Google Scholar 

  9. C. Bennet and G. Grinstein,Phys. Rev. Lett. 55:657 (1985).

    Google Scholar 

  10. E. Domany and W. Kinzel,Phys. Rev. Lett. 53:311 (1984).

    Google Scholar 

  11. E. Domany,Phys. Rev. Lett. 52:871 (1984).

    Google Scholar 

  12. P. Rujan, Cellular automata and statistical mechanical models, IFK der KFA Jülich,J. Stat. Phys. 49:139 (1987).

    Google Scholar 

  13. E. Domany and J. Gubernatis,Phys. Rev. B 32:3354 (1985).

    Google Scholar 

  14. M. T. Jaekel and J. M. Maillard,J. Phys. A Math. Gen. 18:1229 (1985).

    Google Scholar 

  15. A. M. W. Verhagen,J. Stat. Phys. 15:219 (1976).

    Google Scholar 

  16. N. C. Chao and F. Y. Wu,J. Phys. A Math. Gen. 18:L603 (1985).

    Google Scholar 

  17. I. G. Enting,J. Phys. C Solid State Phys. 6:3457 (1973); T. Garel and J. M. Maillard,J. Phys. C 19:L505 (1986).

    Google Scholar 

  18. J. M. Maillard, Lecture, Meeting on Random Schrödinger Equations, University of Arizona (February 1987); P. Rujan, inNon-linear Equations in Classical and Quantum Field Theory, N. Sanchez, ed. (Springer-Verlag, 1985), p. 286.

  19. P. Bak,Rep. Prog. Phys. 45:587 (1982); I. Peschel and V. J. Emery,Z. Phys. B 43:241 (1981).

    Google Scholar 

  20. F. Y. Wu,Rev. Mod. Phys. 54:235 (1982).

    Google Scholar 

  21. M. T. Jaekel and J. M. Maillard,J. Phys. A Math. Gen. 17:2079 (1984);18:2271 (1985).

    Google Scholar 

  22. M. Y. Choi and B. A. Huberman,J. Phys. A Math. Gen. 17:L765 (1984).

    Google Scholar 

  23. I. Peschel and T. T. Truong,J. Stat. Phys. 45:233 (1986).

    Google Scholar 

  24. M. T. Jaekel and J. M. Maillard,J. Phys. A Math. Gen. 18:641 (1985).

    Google Scholar 

  25. A. Georges, D. Hansel, P. Le Doussal, and J. M. Maillard,J. Phys. A Math. Gen. 20:5299 (1987).

    Google Scholar 

  26. G. Grinstein, C. Jayaprakash, and Y. He,Phys. Rev. Lett. 55:2527 (1985).

    Google Scholar 

  27. I. G. Enting,J. Phys. A Math. Gen. 11:2001 (1978).

    Google Scholar 

  28. D. Dhar and J. M. Maillard,J. Phys. A Math. Gen. 18:L383 (1985).

    Google Scholar 

  29. A. Georges, D. Hansel, P. Le Doussal, and J. M. Maillard,J. Phys. A Math. Gen. 19:1001 (1986).

    Google Scholar 

  30. A. Georges, D. Hansel, P. Le Doussal, and J. M. Maillard,J. Phys. A Math. Gen. 19:L329 (1986).

    Google Scholar 

  31. W. Kinzel, inPercolation Structures and Processes, G. Deutscher, R. Zallen, and J. Adler, eds. (Israel Physical Society, 1983).

  32. B. K. Chakrabarti and S. S. Manna,J. Phys. A Math. Gen. 16:L113 (1983).

    Google Scholar 

  33. J. Cardy,J. Phys. A Math. Gen. 16:L355 (1983).

    Google Scholar 

  34. P. C. Hohenberg and B. I. Halperin,Rev. Mod. Phys. 49:435 (1977).

    Google Scholar 

  35. S. P. Obukhov,Physica 101A:145 (1980).

    Google Scholar 

  36. J. L. Cardy and R. L. Sugar,J. Phys. A Math. Gen. 13:L423 (1980).

    Google Scholar 

  37. E. Domany and W. Kinzel,Phys. Rev. Lett. 47:5 (1981).

    Google Scholar 

  38. S. W. J. Blöte and H. J. Hilhorst,J. Phys. A Math. Gen. 15:L631 (1982).

    Google Scholar 

  39. S. M. Bhattacharjee,Phys. Rev. Lett. 53:1161 (1984).

    Google Scholar 

  40. E. W. Montroll, inApplied Combinatorial Mathematics, E. F. Beckenbach, ed. (Wiley, New York, 1964).

    Google Scholar 

  41. S. M. Bhattacharjee, J. F. Nagle, D. A. Huse, and M. E. Fisher,J. Stat. Phys. 32:361 (1983).

    Google Scholar 

  42. J. des Cloiseaux,J. Phys. 36:281 (1975).

    Google Scholar 

  43. W. Feller,An Introduction to Probability Theory and Its Applications (Wiley, New York, 1971), Vol. 1, p. 352.

    Google Scholar 

  44. A. Aharony, E. Domany, R. M. Hornreich, T. Schneider, and M. Zannetti,Phys. Rev. B 32:3358 (1985).

    Google Scholar 

  45. G. Vichniac,Physica 10D:96 (1984).

    Google Scholar 

  46. D. S. Zimmerman, C. Kalln, and A. J. Berlinsky,Phys. Rev. Lett. 58:1881 (1987).

    Google Scholar 

  47. R. M. Hornreich, M. Luban, and S. Shtrikman,Phys. Rev. Lett. 35:1678 (1975); D. Auerbach, Master Thesis, Weizmann Institute (1986).

    Google Scholar 

  48. G. Parisi and N. Sourlas,Nucl. Phys. B 206:321 (1982).

    Google Scholar 

  49. J. Vinals and J. D. Gunton,J. Phys. A Math. Gen. 19:L933 (1986).

    Google Scholar 

  50. H. Abarbanel, J. Bronzan, and A. Whote,Phys. Rep. 21:119 (1975); M. Moshe,Phys. Rep. C 37:255 (1978).

    Google Scholar 

  51. R. C. Brower, M. A. Furman, and H. Moshe,Phys. Lett. 76B:213 (1978).

    Google Scholar 

  52. W. Klein and W. Kinzel,J. Phys. A Math. Gen. 14:L405 (1981).

    Google Scholar 

  53. F. Schlögl,Z. Phys. 253:147 (1972).

    Google Scholar 

  54. P. Grassberger and K. Sundermeyer,Phys. Lett. 77B:220 (1978).

    Google Scholar 

  55. P. Grassberger and A. De La Torre,Ann. Phys. 122:373 (1979).

    Google Scholar 

  56. R. C. Brower, M. A. Furman, and K. Subbarao,Phys. Rev. D 15:1756 (1977).

    Google Scholar 

  57. J. L. Cardy and R. L. Sugar,Phys. Rev. D 12:2514 (1975).

    Google Scholar 

  58. D. Hansel and J. M. Maillard, Preprint LPTHE 87/29, and references therein.

  59. G. Vichniac, P. Tamayo, and H. Hartman,J. Stat. Phys. 45:875 (1986).

    Google Scholar 

  60. B. Chopard and M. Droz, University of Geneva Preprint (1987).

  61. Z. Racz,Phys. Rev. Lett. 55:1707 (1985); J. Marro, J. L. Lebowitz, H. Spohn, and M. H. Kallos,J. Stat. Phys. 38:725 (1985).

    Google Scholar 

  62. S. Katz, J. M. Lebowitz, and H. Spohn,J. Stat. Phys. 34:497 (1984); J. S. Wang and J. L. Lebowitz, Phase transitions and universality in nonequilibrium steady states of stochastic Ising models, Preprint.

    Google Scholar 

  63. Liggett,Interacting Particle Systems.

  64. T. Schneider, M. Zannetti, and R. Badii,Phys. Rev. B 31:2941 (1985); T. Schneider and M. Schwatz,Phys. Rev. B 31:7484 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georges, A., Le Doussal, P. From equilibrium spin models to probabilistic cellular automata. J Stat Phys 54, 1011–1064 (1989). https://doi.org/10.1007/BF01019786

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01019786

Key words

Navigation