Skip to main content
Log in

Fourier acceleration of iterative processes in disordered systems

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Technical details are given on how to use Fourier acceleration with iterative processes such as relaxation and conjugate gradient methods. These methods are often used to solve large linear systems of equations, but become hopelessly slow very rapidly as the size of the set of equations to be solved increases. Fourier acceleration is a method designed to alleviate these problems and result in a very fast algorithm. The method is explained for the Jacobi relaxation and conjugate gradient methods and is applied to two models: the random resistor network and the random central-force network. In the first model, acceleration works very well; in the second, little is gained. We discuss reasons for this. We also include a discussion of stopping criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Forsythe and C. B. Moler,Computer Solutions of Linear Algebraic Systems (Prentice-Hall, Englewood Cliffs, New Jersey, 1967); J. A. George,SIAM J. Numerical Analysis 10:345 (1973); A. J. Hoffman, N. S. Martin, and D. J. Rose,SIAM J. Numerical Analysis 10:364 (1973).

    Google Scholar 

  2. G. H. Golub and C. F. van Loan,Matrix Computations (North Oxford, London, 1986).

    Google Scholar 

  3. R. S. Varga,Matrix Iterative Analysis (Prentice-Hall, Englewood Cliffs, New Jersey, 1962).

    Google Scholar 

  4. D. M. Young,Iterative Solutions of Large Linear Systems (Academic Press, New York, 1971).

    Google Scholar 

  5. L. A. Hagelman and D. M. Young,Applied Iterative Methods (Academic Press, New York, 1981).

    Google Scholar 

  6. J. Stoer and R. Bulirsch,Introduction to Numerical Analysis (Springer-Verlag, New York, 1980), p. 572.

    Google Scholar 

  7. G. G. Batrouni, A. Hansen, and M. Nelkin,Phys. Rev. Lett. 57:1336 (1986).

    Google Scholar 

  8. G. Parisi, inProgress in Gauge Field Theory, G. 't Hooftet al. eds. (Plenum Press, New York, 1984); G. G. Batrouni, G. R. Katz, A. S. Kronfeld, G. P. Lepage, B. Svetitsky, and K. Wilson,Phys. Rev. D 32:2736 (1985).

    Google Scholar 

  9. H. E. Stanley and N. Ostrowsky, eds.,On Growth and Form (Martinus Nijhoff, Boston, 1986).

    Google Scholar 

  10. S. Kirkpatrick, inIll-Condensed Matter, R. Balian, R. Maynard, and G. Toulouse, eds. (North-Holland, Amsterdam, 1979).

    Google Scholar 

  11. R. Rammal, C. Tannous, P. Breton, and A.-M. S. Tremblay,Phys. Rev. Lett. 54:1718 (1985); L. de Arcangelis, S. Redner, and A. Coniglio,Phys. Rev. B 31:4725 (1985).

    Google Scholar 

  12. S. Feng and P. N. Sen,Phys. Rev. Lett. 52:216 (1984); A. R. Day, R. R. Tremblay, and A.-M. S. Tremblay,Phys. Rev. Lett. 56:2501 (1986).

    Google Scholar 

  13. A. Hansen and S. Roux, preprint.

  14. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,Numerical Recipes (Cambridge University Press, Cambridge, 1986).

    Google Scholar 

  15. H. J. Herrmann, D. C. Hong, and H. E. Stanley,J. Phys. A 17:L261 (1984).

    Google Scholar 

  16. S. Roux and A. Hansen,J. Phys. A 20:L1281 (1987).

    Google Scholar 

  17. A. Aho, J. Hopcroft, and R. Ullman,The Design and Analysis of Computer Algorithms (Addison-Wesley, Reading, Massachusetts, 1974).

    Google Scholar 

  18. J. Hopcroft and R. E. Tarjan,Commun. ACM (Algorithm 447)16:372 (1973).

    Google Scholar 

  19. D. Stauffer,Introduction to Percolation Theory (Francis and Taylor, London, 1985).

    Google Scholar 

  20. H. J. Herrmann and H. E. Stanley,Phys. Rev. Lett. 53:1121 (1984).

    Google Scholar 

  21. R. Rammal and G. Toulouse,J. Phys. Lett. (Paris)44:L13 (1983).

    Google Scholar 

  22. S. Havlin, D. Movshovitz, B. Trus, and G. H. Weiss,J. Phys. A 18:L719 (1985).

    Google Scholar 

  23. S. Roux and A. Hansen,J. Phys. (Paris) 49:897 (1988).

    Google Scholar 

  24. H. E. Stanley and A. Coniglio,Phys. Rev. B 29:522 (1984).

    Google Scholar 

  25. B. O'Shaughnessy and I. Procaccia,Phys. Rev. Lett. 54:455 (1985).

    Google Scholar 

  26. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,Numerical Recipes (Cambridge University Press, Cambridge, 1986), Chapter 12.

    Google Scholar 

  27. M. R. Hestenes and E. Stiefel,Nat. Bur. Stand. J. Res. 49:409 (1952).

    Google Scholar 

  28. P. Concus, G. H. Golub, and D. P. O'Leary, inSparse Matrix Computations, J. R. Bunch and D. J. Rose, eds. (Academic Press, New York, 1976).

    Google Scholar 

  29. G. R. Katz, Ph.D. thesis, Cornell University, Ithaca, New York (1986).

    Google Scholar 

  30. A. Hansen, Ph.D. thesis, Cornell University, Ithaca, New York (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

George Batrouni, G., Hansen, A. Fourier acceleration of iterative processes in disordered systems. J Stat Phys 52, 747–773 (1988). https://doi.org/10.1007/BF01019728

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01019728

Key words

Navigation