Skip to main content
Log in

Randomized Kaczmarz iteration methods: Algorithmic extensions and convergence theory

  • Survey
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We review and compare several representative and effective randomized projection iteration methods, including the randomized Kaczmarz method, the randomized coordinate descent method, and their modifications and extensions, for solving the large, sparse, consistent or inconsistent systems of linear equations. We also anatomize, extract, and purify the asymptotic convergence theories of these iteration methods, and discuss, analyze, and summarize their advantages and disadvantages from the viewpoints of both theory and computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Bai, Z.-Z., Liu, X.-G.: On the Meany inequality with applications to convergence analysis of several row-action iteration methods. Numer. Math. 124, 215–236 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bai, Z.-Z., Pan, J.-Y.: Matrix Analysis and Computations. SIAM, Philadelphia (2021)

    Book  MATH  Google Scholar 

  3. Bai, Z.-Z., Wang, L.: On convergence rates of Kaczmarz-type methods with different selection rules of working rows. Appl. Numer. Math. 186, 289–319 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bai, Z.-Z., Wu, W.-T.: On greedy randomized Kaczmarz method for solving large sparse linear systems. SIAM J. Sci. Comput. 40, A592–A606 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bai, Z.-Z., Wu, W.-T.: On relaxed greedy randomized Kaczmarz methods for solving large sparse linear systems. Appl. Math. Lett. 83, 21–26 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bai, Z.-Z., Wu, W.-T.: On convergence rate of the randomized Kaczmarz method. Linear Algebra Appl. 553, 252–269 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bai, Z.-Z., Wu, W.-T.: On partially randomized extended Kaczmarz method for solving large sparse overdetermined inconsistent linear systems. Linear Algebra Appl. 578, 225–250 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bai, Z.-Z., Wu, W.-T.: On greedy randomized coordinate descent methods for solving large linear least-squares problems. Numer. Linear Algebra Appl. 26(e2237), 1–15 (2019)

    MathSciNet  MATH  Google Scholar 

  9. Bai, Z.-Z., Wu, W.-T.: On greedy randomized augmented Kaczmarz method for solving large sparse inconsistent linear systems. SIAM J. Sci. Comput. 43, A3892–A3911 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bai, Z.-Z., Wang, L., Wu, W.-T.: On convergence rate of the randomized Gauss–Seidel method. Linear Algebra Appl. 611, 237–252 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bai, Z.-Z., Wang, L., Muratova, G.V.: On relaxed greedy randomized augmented Kaczmarz methods for solving large sparse inconsistent linear systems. East Asian J. Appl. Math. 12, 323–332 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  12. Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 20, 103–120 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chang, K.-W., Hsieh, C.-J., Lin, C.-J.: Coordinate descent method for large-scale L2-loss linear support vector machines. J. Mach. Learn. Res. 9, 1369–1398 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins University Press, Baltimore (2013)

    Book  MATH  Google Scholar 

  15. Hansen, P.C., Jørgensen, J.S., Lionheart, W.R.B.: Computed Tomography: Algorithms, Insight, and Just Enough Theory. SIAM, Philadelphia (2021)

    Book  MATH  Google Scholar 

  16. Herman, G.T.: Fundamentals of Computerized Tomography: Image Reconstruction from Projections, 2nd edn. Springer, Dordrecht (2009)

    Book  MATH  Google Scholar 

  17. Herman, G.T., Meyer, L.B.: Algebraic reconstruction techniques can be made computationally efficient. IEEE Trans. Med. Imaging 12, 600–609 (1993)

    Article  Google Scholar 

  18. Kaczmarz, S.: Angenäherte Auflösung von Systemen linearer Gleichungen. Bull. Int. Acad. Polon. Sci. Lett. A 35, 355–357 (1937)

  19. Leventhal, D., Lewis, A.S.: Randomized methods for linear constraints: Convergence rates and conditioning. Math. Oper. Res. 35, 641–654 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ma, A., Needell, D., Ramdas, A.: Convergence properties of the randomized extended Gauss–Seidel and Kaczmarz methods. SIAM J. Matrix Anal. Appl. 36, 1590–1604 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Meany, R.K.: A matrix inequality. SIAM J. Numer. Anal. 6, 104–107 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  22. Natterer, F.: The Mathematics of Computerized Tomography. SIAM, Philadelphia (2001)

    Book  MATH  Google Scholar 

  23. Popa, C.: Convergence rates for Kaczmarz-type algorithms. Numer. Algorithms 79, 1–17 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Strohmer, T., Vershynin, R.: A randomized Kaczmarz algorithm with exponential convergence. J. Fourier Anal. Appl. 15, 262–278 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wu, W.-T.: On convergence of the partially randomized extended Kaczmarz method. East Asian J. Appl. Math. 12, 435–448 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zouzias, A., Freris, N.M.: Randomized extended Kaczmarz for solving least squares. SIAM J. Matrix Anal. Appl. 34, 773–793 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very much indebted to the referees for their constructive suggestions and insightful comments, which greatly improved the original manuscript of this paper.

Funding

This work is supported by The National Natural Science Foundation of China (No. 12071472, No. 12001043), and The Beijing Institute of Technology Research Fund Program for Young Scholars, P.R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Zhi Bai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, ZZ., Wu, WT. Randomized Kaczmarz iteration methods: Algorithmic extensions and convergence theory. Japan J. Indust. Appl. Math. 40, 1421–1443 (2023). https://doi.org/10.1007/s13160-023-00586-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-023-00586-7

Keywords

Mathematics Subject Classification

Navigation