Skip to main content
Log in

Unstable state dynamics: Treatment of colored noise

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The diffusion of a particle set near an unstable point in a bistable potential is considered. The scaling theory of fluctuations proposed originally for onedimensional systems driven by Gaussian white noise is extended to arbitrary dimensions. The merits and drawbacks of the scaling theory are discussed by taking a model problem in one dimension. It is shown in passing that the saddle point approximation enables one to get analytic expressions for various moments of the stochastic process. The two different methods to include asymptotic fluctuations-which are absent in the usual scaling solution-are shown to be equivalent. An alternate way of including asymptotic fluctuations is attempted by solving the associated Fokker-Planck equation using the Fer formula. The reason for the failure of this method is traced. After this, it is argued that the unified scaling theory should be applicable for treatment of colored noise as well, for the scaling assumption is independent of the statistical property of the driving noise. Explicit Monte Carlo simulation of a model onedimensional system driven by exponentially correlated Gaussian noise is performed and compared with the scaling solution to bolster this point. The agreement is very good.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. G. van Kampen,Phys. Rep. 24:171 (1976).

    Google Scholar 

  2. R. F. Fox,Phys. Rep. 48:179 (1978).

    Google Scholar 

  3. N. G. van Kampen,J. Stat. Phys. 25:431 (1981).

    Google Scholar 

  4. N. G. van Kampen,Can. J. Phys. 39:551 (1961).

    Google Scholar 

  5. A. Budgor,J. Stat. Phys. 15:355 (1976).

    Google Scholar 

  6. J. O. Eaves and W. P. Reinhardt,J. Stat. Phys. 25:127 (1981), and references therein.

    Google Scholar 

  7. M. C. Valsakumar, K. P. N. Murthy, and G. Ananthakrishna,J. Stat. Phys. 30:617 (1983).

    Google Scholar 

  8. B. J. West, G. Rovner, and K. Lindenberg,J. Slat. Phys. 30:633 (1983).

    Google Scholar 

  9. R. Indira, M. C. Valsakumar, K. P. N. Murthy, and G. Ananthakrishna,J. Stat. Phys. 33:181 (1983).

    Google Scholar 

  10. H. Dekker,Physica 103A:55, 80 (1980).

    Google Scholar 

  11. M. Suzuki,J. Stat. Phys. 16:11 (1977).

    Google Scholar 

  12. M. Suzuki,Adv. Chem. Phys. 46:195 (1981), and references therein.

    Google Scholar 

  13. F. Haake,Phys. Rev. Lett. 41:1685 (1978).

    Google Scholar 

  14. F. de Pasquale and P. Tombesi,Phys. Lett. 72A:7 (1979).

    Google Scholar 

  15. W. Horsthemke and A. Bach,Z. Phys. B22:189 (1975).

    Google Scholar 

  16. R. Graham,Z. Phys. B26:281 (1977).

    Google Scholar 

  17. B. Caroli, C. Caroli, and B. Roulet,J. Stat. Phys. 21:415 (1979).

    Google Scholar 

  18. B. Caroli, C. Caroli, and B. Roulet,Physica 101A:581 (1980).

    Google Scholar 

  19. H. Dekker,Phys. Lett. 88A:279 (1983).

    Google Scholar 

  20. M. C. Valsakumar,J. Stat. Phys. 32:545 (1983), inLecture Notes in Physics, No. 184, G. S. Agarwal and S. Dattagupta, eds. (Springer-Verlag, Berlin, 1983).

    Google Scholar 

  21. M. Suzuki,Proceedings of the XVIIth Solvay Conference on Physics (John Wiley and Sons, 1980).

  22. R. M. Wilcox,J. Math. Phys. 8:962 (1967).

    Google Scholar 

  23. S. N. Dixit and P. S. Sahni,Phys. Rev. Lett. 50:1273 (1983).

    Google Scholar 

  24. H. F. Trotter,Proc. Am. Math. Soc. 73:211 (1967).

    Google Scholar 

  25. H. De Raedt and B. De Raedt,Phys. Rev. A 28:3515 (1983).

    Google Scholar 

  26. V. Yu Zitserman and A. N. Drozdov,Phys. Lett. 94A:17 (1983).

    Google Scholar 

  27. G. A. Korn and T. M. Korn,Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York, 1961).

    Google Scholar 

  28. P. Roman,Some Modern Mathematics for Physicists and Other Outsiders (Pergamon Press, New York, 1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valsakumar, M.C. Unstable state dynamics: Treatment of colored noise. J Stat Phys 39, 347–365 (1985). https://doi.org/10.1007/BF01018667

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01018667

Key words

Navigation