Skip to main content
Log in

Theory of surface tension and its application to simple fluids

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider a liquid-vapor interface in thermal equilibrium. The tangential component of the pressure tensor is supposed to depend explicitly upon the position and the density profile. Under this hypothesis the mechanical definition of surface tension becomes a finite summation ofN+1 terms related directly to the local compressibility. When the inhomogeneous compressibility equation is considered, the theory provides a microscopic expression of the surface tension coefficient. A calculation for argon near the critical point is done; the agreement with experiment is satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. K. Percus,Chem. Phys. Lett. 123:311 (1986).

    Google Scholar 

  2. R. C. Tolman,J. Chem. Phys. 17:118 (1949).

    Google Scholar 

  3. S. Ono and S. Kondo,Encyclopedia of Physics (Springer, Berlin, 1960).

    Google Scholar 

  4. J. G. Kirkwood and F. P. Buff,J. Chem. Phys. 17:388 (1949).

    Google Scholar 

  5. B. S. Carey, L. E. Scriven, and H. T. Davis,J. Chem. Phys. 69:5040 (1978).

    Google Scholar 

  6. J. S. Rowlinson and B. Widom,Molecular Theory of Capillarity (Clarendon, Oxford, 1982).

    Google Scholar 

  7. I. Z. Fisher,Statistical Theory of Liquids (University of Chicago Press, 1964); S. Toxvaerd, inStatistical Mechanics, Vol. II, K. Singer, ed. (Chemical Society, London, 1975), p. 266.

  8. J. Yvon,Nuovo Cimento (Suppl.) 9:144 (1958).

    Google Scholar 

  9. C. A. Croxton,Statistical Mechanics of the Liquid Surface (Wiley, New York, 1980).

    Google Scholar 

  10. P. G. Mikolaj and C. J. Pings,J. Chem. Phys. 46:1401 (1967).

    Google Scholar 

  11. A. Eisenstein and N. S. Gingrich,Phys. Rev. 62:261 (1942).

    Google Scholar 

  12. E. S. Wu and W. W. Webb,Phys. Rev. A 8:2065 (1973).

    Google Scholar 

  13. D. Beaglehole,Physica 100B:163 (1980).

    Google Scholar 

  14. B. Widom,J. Chem. Phys. 43:3892 (1965); D. Jasnow,Rep. Prog. Phys. 47:1059 (1984).

    Google Scholar 

  15. J. O. Hirschfelder and Ch. F. Curtiss,Molecular Theory of Gases and Liquids (Wiley, New York, 1964).

    Google Scholar 

  16. M. Baus,J. Chem. Phys. 76:2003 (1982).

    Google Scholar 

  17. D. G. Triezenberg and R. Zwanzig,Phys. Rev. Lett. 28:1183 (1972).

    Google Scholar 

  18. K. S. Liu,J. Chem. Phys. 60:4226 (1974).

    Google Scholar 

  19. G. A. Chapela, G. Saville, S. M. Thompson, and J. S. Rowlinson,J. Chem. Soc. Faraday Trans. II 73:1133 (1977).

    Google Scholar 

  20. S. Toxvaerd,J. Chem. Phys. 55:3116 (1971).

    Google Scholar 

  21. R. W. Zwanzig, J. G. Kirkwood, K. F. Stripp, and I. Oppenheim,J. Chem. Phys. 21:1268 (1963).

    Google Scholar 

  22. A. G. MacLellan,Proc. R. Soc. A 213:274 (1952).

    Google Scholar 

  23. D. Stansfield,Proc. Phys. Soc. 72:854 (1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuz, V.A., Vila, M.A., Garazo, A.N. et al. Theory of surface tension and its application to simple fluids. J Stat Phys 49, 1209–1219 (1987). https://doi.org/10.1007/BF01017567

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01017567

Key words

Navigation