Skip to main content
Log in

Analysis of the Suitability of Mechanics Models for Calculating Interface Surface Tension

  • PHYSICAL CHEMISTRY OF SURFACE PHENOMENA
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The suitability of mechanics models for calculating interface surface tension (ST) is analyzed from the viewpoint of molecular kinetic theory. A theory based on the lattice gas model is shown to consider the intermolecular interactions of comparable components and a change in the average bond lengths between dense phase particles in a quasi-chemical approximation that describes direct correlations. It can be applied to three aggregate states and their interfaces, allowing comparison of mechanics and thermodynamics models if the concept of ST is introduced. It is found that the Laplace equation is incompatible with the conditions of the equilibrium of coexisting phases on distorted vapor–liquid interfaces, but it can be used to describe the mechanical equilibrium in systems with an intermediate film between the neighboring phases (if there is no chemical equilibrium between them). Mechanical and thermodynamic definitions of ST under different conditions are discussed. It is shown that to calculate equilibrium ST, we must use the Gibbs definition as the excess free energy at the interface. A procedure for calculating nonequilibrium analogs of surface characteristics (free Helmholtz energy, chemical potential, ST) of solid solutions is formulated that considers internal deformations of solid boundaries and the effect of external loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Volmer, Kinetik der Phasenbilding (Steinkopff, Dresden, 1939) [in German].

    Google Scholar 

  2. Ya. I. Frenkel, Kinetic Theory of Liquids (Akad. Nauk SSSR, Moscow, 1945; Oxford Univ. Press, London, 1946).

  3. A. W. Adamson, Physical Chemistry of Surfaces, 3rd ed. (Wiley, New York, London, Sydney, Toronto, 1975).

    Google Scholar 

  4. V. P. Skripov, Metastable Liquid (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  5. I. P. Suzdalev, Nanotechnology: Physicochemistry of Clusters, Nanostructures, and Nanomaterials (KomKniga, Moscow, 2006) [in Russian].

    Google Scholar 

  6. V. M. Vorotyntsev, Nanoparticles in Two-Phase Systems (Izvestiya, Moscow, 2010) [in Russian].

    Google Scholar 

  7. A. I. Rusanov, Phase Equilibria and Surface Phenomena (Khimiya, Leningrad, 1967) [in Russian].

    Google Scholar 

  8. D. A. Fridrikhsberg, Textbook of Colloid Chemistry (Khimiya, Leningrad, 1984) [in Russian].

    Google Scholar 

  9. B. V. Derjaguin, N. V. Churaev, and V. M. Muller, Surface Forces (Nauka, Moscow, 1985; Consultants Bureau, New York, 1987).

  10. E. D. Shchukin, A. V. Pertsov, and E. A. Amelina, Colloid Chemistry (Vysshaya Shkola, Moscow, 1992).

    Google Scholar 

  11. G. C. Benson and K. S. Yun, in The Solid-Gas Interface, Ed. by E. A. Flood (Marcel Dekker, New York, 1967).

    Google Scholar 

  12. T. L. Hill, Adv. Catal. 4, 227 (1952).

    Google Scholar 

  13. R. J. Tykodi, J. Chem. Phys. 22, 1647 (1954).

    Article  CAS  Google Scholar 

  14. R. Shuttleworth, Proc. R. Soc. London, Ser. A 63, 444 (1950).

    Article  Google Scholar 

  15. R. S. Hansen, J. Phys. Chem. 66, 410 (1962).

    Article  CAS  Google Scholar 

  16. P. C. Goodrich, Trans. Faraday Soc. 64 (552), 3403 (1968).

    Article  CAS  Google Scholar 

  17. J. C. Eriksson, Surf. Sci. 14, 221 (1969).

    Article  CAS  Google Scholar 

  18. A. A. Fomkin, V. V. Serpinskii, and K. Fidler, Russ. Chem. Bull. 31, 1071 (1982).

    Article  Google Scholar 

  19. A. A. Fomkin, I. I. Seliverstova, and V. V. Serpinskii, Russ. Chem. Bull. 35, 256 (1986).

    Article  Google Scholar 

  20. Yu. I. Tarasevich et al., J. Colloid Interface Sci. 164, 114 (1994).

    Article  Google Scholar 

  21. V. Dunning, in The Solid-Gas Interface, Ed. by E. A. Flood (Marcel Dekker, New York, 1967).

    Google Scholar 

  22. B. Tripnell, Chemisorption (Sutterworth’s Scientific, London, 1955).

    Google Scholar 

  23. O. V. Krylov and V. F. Kiselev, Adsorption and Catalysis on Transition Metals and Their Oxides (Khimiya, Moscow, 1981) [in Russian].

    Google Scholar 

  24. M. W. Roberts and C. S. McKee, Chemistry of the Metal-Gas Interface (Clarendon, Oxford, 1978).

    Google Scholar 

  25. G. A. Somorjai, Chemistry in Two-Dimension Surface (Cornell Univ. Press, London, New York, Ithaca, 1981).

    Google Scholar 

  26. J. W. Gibbs, Elementary Principles in Statistical Mechanics (Yale Univ., New Haven, CN, 1902).

  27. Yu. K. Tovbin, Russ. J. Phys. Chem. A 94, 270 (2020).

  28. L. D. Landau and E. M. Lifshits, Course of Theoretical Physics, Vol. 7: The Theory of Elasticity (Nauka, Moscow, 1987; Pergamon, New York, 1986).

  29. Yu. K. Tovbin, Small Systems and Fundamentals of Thermodynamics (Fizmatlit, Moscow, 2018; CRC, Boca Raton, FL, 2019).

    Book  Google Scholar 

  30. A. A. Smirnov, Theory of Interstitial Alloys (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  31. A. M. Krivoglaz and E. A. Tikhonova, Ukr. Fiz. Zh. 5, 174 (1969).

    Google Scholar 

  32. A. G. Khachaturyan, Theory of Phase Transitions and Solid Structure (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  33. A. A. Katsnel’son and A. I. Olemskoi, Microscopic Theory of Heterogeneous Structures (Mosk. Gos. Univ., Moscow, 1987) [in Russian].

    Google Scholar 

  34. K. P. Gurov, B. A. Kartashkin, and Yu. E. Ugaste, Interdiffusion in Multiphase Metallic Systems (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  35. I. B. Borovskii, K. P. Gurov, I. D. Marchukova, and Yu. E. Ugaste, Interdiffusion Processes in Alloys (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  36. L. D. Landau and E. M. Lifshits, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1964; Pergamon, Oxford, 1980).

  37. S. Ono and S. Kondo, Molecular Theory of Surface Tension in Liquids (Springer, Berlin, Gottinhen, Heidelberg, 1960).

  38. J. S. Rowlinson and B. Widom, Molecular Theory of Capillarity (Clarendon, Oxford, 1982).

    Google Scholar 

  39. F. P. Buff, J. Chem. Phys. 23, 419 (1955).

  40. Yu. K. Tovbin, Russ. J. Phys. Chem. A 92, 1045 (2018).

    Article  CAS  Google Scholar 

  41. G. F. Voronin, Principles of Thermodynamics (Mosk. Gos. Univ., Moscow, 1987) [in Russian].

    Google Scholar 

  42. I. A. Kvasnikov, Thermodynamics and Statistical Physics, Vol. 1: Theory of Equilibrium Systems: Thermodynamics (Editorial URSS, Moscow, 2002) [in Russian].

  43. Yu. K. Tovbin, Russ. J. Phys. Chem. A 92, 1 (2018).

    Article  CAS  Google Scholar 

  44. I. Prigogine and R. Defay, Chemical Thermodynamics (Longmans Green, London, 1954).

    Google Scholar 

  45. Yu. K. Tovbin and A. B. Rabinovich, Russ. Chem. Bull. 59, 677 (2010).

    Article  CAS  Google Scholar 

  46. Yu. K. Tovbin, Russ. J. Phys. Chem. A 84, 1717 (2010).

    Article  CAS  Google Scholar 

  47. C. N. Yang and T. D. Lee, Phys. Rev. 87, 404 (1952).

    Article  CAS  Google Scholar 

  48. K. Huang, Statistical Mechanics (Wiley, New York, 1963).

    Google Scholar 

  49. G. M. Bartenev and S. Ya. Frenkel’, Physics of Polymers (Khimiya, Leningrad, 1990) [in Russian].

    Google Scholar 

  50. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Clarendon, Oxford, 1988).

    Google Scholar 

  51. J. O. Hirschfelder, Ch. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).

    Google Scholar 

  52. J. H. Irving and J. G. Kirkwood, J. Chem. Phys. 18, 817 (1950).

    Article  CAS  Google Scholar 

  53. Yu. K. Tovbin, Russ. J. Phys. Chem. A 92, 2424 (2018).

    Article  CAS  Google Scholar 

  54. Yu. K. Tovbin, Russ. J. Phys. Chem. A 93 (9), 1311 (2019).

  55. Yu. K. Tovbin, Russ. J. Phys. Chem. A 91, 1621 (2017).

    Article  CAS  Google Scholar 

  56. Yu. K. Tovbin, Russ. J. Phys. Chem. A 88, 1932 (2014).

    Article  CAS  Google Scholar 

  57. L. I. Sedov, Mechanics of Continuous Media (Nauka, Moscow, 1970), Vol. 1 [in Russian].

    Google Scholar 

  58. A. G. Khachaturyan, Theory of Phase Transitions and Solid Structure (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  59. O. K. Rice, J. Phys. Chem. 31, 207 (1927).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, project code 18-03-00030a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. K. Tovbin.

Additional information

Tranaslated by L. Chernikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tovbin, Y.K. Analysis of the Suitability of Mechanics Models for Calculating Interface Surface Tension. Russ. J. Phys. Chem. 94, 622–630 (2020). https://doi.org/10.1134/S0036024420020338

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420020338

Keywords:

Navigation