Skip to main content
Log in

Ergodic and quasideterministic properties of finite-dimensional stochastic systems

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The ergodic and stability properties of certain stochastic models are studied. Each model is described by a finite-dimensional stochastic processx λ(t) satisfyingdx λ=ℱλ(x λ,t)dt+ λdz(t), where ℱλ represents a “secular force” andz(t) is a stochastic process with given statistical properties. Such a model may represent a reduced description of an infinite-particle system. Thenx λ (t) may be either a set of macrovariables fluctuating about thermal equilibrium or the macrostate of a system maintained through pumping in a nonequilibrium state. Two Markovian models for whichz(t) is Wiener and ℱλ (y, t) = G(λ,y(t)) for someG nonlinear iny(t) are shown to possess a unique stationary probability density which is approached by any other density ast → ∞. For one of these models, which is of Hamiltonian type, the stationary state is given by the Maxwell-Boltzmann distribution. A particular form of non-Markovian model is also proved to have the above mixing property with respect to the Maxwell-Boltzmann distribution. Finally, the behavior of the sample paths ofx λ (t) for small values of the parameter A is investigated. In the case whenz(t) is Wiener and ℱλ (y, t) = G(y(t), it is shown thatx λ (t) will remain close to the deterministic trajectoryx 0 (t) (corresponding to λ = 0) for allt ⩾= 0 if and only ifx 0 (t) is highly stable with respect to small perturbations of the initial conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Arnold,Stochastic Differential Equations: Theory and Applications (Wiley-Interscience, 1974).

  2. I. I. Gihman and A. V. Skorohod,Stochastic Differential Equations (Springer-Verlag, Berlin, 1972).

    Google Scholar 

  3. G. G. Emch,J. Math. Phys. 14:1775 (1973).

    Google Scholar 

  4. J. T. Lewis and J. V. Pulé,International Symposium on Mathematical Problems in Theoretical Physics, H. Araki, ed. (Springer-Verlag, Berlin, 1975), pp. 516–519.

    Google Scholar 

  5. G. W. Ford, M. Kac, and P. Mazur,J. Math. Phys. 6:504 (1965).

    Google Scholar 

  6. R. Graham,Springer Tracts in Modern Physics, Vol. 66 (1973).

  7. H. Haken,Rev. Mod. Phys. 47:67 (1975).

    Google Scholar 

  8. N. G. van Kampen,Phys. Reports 24:171 (1976).

    Google Scholar 

  9. R. Zwanzig,J. Stat. Phys. 9:215 (1973).

    Google Scholar 

  10. J. L. Lebowitz and P. G. Bergmann,Ann. Phys. 1∶:1 (1957).

    Google Scholar 

  11. A. H. Gray, Jr.,J. Math. Phys. 6:644 (1965).

    Google Scholar 

  12. N. G. van Kampen,Can. J. Phys. 39:551 (1961).

    Google Scholar 

  13. G. L. Sewell, inLectures in Theoretical Physics, Vol. X-A, A. O. Barut and W. E. Brittin, eds. (Gordon and Breach, 1968), pp. 289–327.

  14. R. Kubo, K. Matsuo, and K. Kitahara,J. Stat. Phys. 9:51 (1973).

    Google Scholar 

  15. E. Nelson,Dynamical Theories of Brownian Motion (Princeton Univ. Press, 1967).

  16. S. Chandrasekhar,Rev. Mod. Phys. 15:1 (1943); reprinted inSelected Papers on Noise and Stochastic Processes, N. Wax, ed. (Dover, New York, 1954).

    Google Scholar 

  17. M. M. Tropper, Thesis, Univ. of London (1977).

  18. G. L. Sewell,Ann. Phys. 85:336 (1974).

    Google Scholar 

  19. E. B. Dynkin,Markov Processes, Vol. I (Springer-Verlag, Berlin, 1965).

    Google Scholar 

  20. K. Yosida,Functional Analysis (Springer-Verlag, Berlin, 1968).

    Google Scholar 

  21. R. E. Bruck, Jr.,J. Functional Anal. 18:15 (1975).

    Google Scholar 

  22. E. B. Davies,Comm. Math. Phys. 27:309 (1972);33:171 (1973);39:91 (1974).

    Google Scholar 

  23. G. C. Papanicolaou and S. R. S. Varadhan,Comm. Pure Appl. Math. 26:497 (1973).

    Google Scholar 

  24. G. C. Papanicolaou and W. Kohler,Comm. Pure Appl. Math. 27:641 (1974);Comm. Math. Phys. 45:217 (1975).

    Google Scholar 

  25. P. L. Torres,J. Math. Phys., to appear; Thesis, Univ. of London (1976).

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a portion of the author's Ph.D. thesis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tropper, M.M. Ergodic and quasideterministic properties of finite-dimensional stochastic systems. J Stat Phys 17, 491–509 (1977). https://doi.org/10.1007/BF01014351

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01014351

Key words

Navigation