Skip to main content
Log in

Quasi-stationarity and quasi-ergodicity of general Markov processes

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study the quasi-stationarity and quasi-ergodicity of general Markov processes. We show, among other things, that if X is a standard Markov process admitting a dual with respect to a finite measure m and if X admits a strictly positive continuous transition density p(t, x, y) (with respect to m) which is bounded in (x, y) for every t > 0, then X has a unique quasi-stationary distribution and a unique quasi-ergodic distribution. We also present several classes of Markov processes satisfying the above conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Breyer L A, Roberts G O. A quasi-ergodic theorem for evanescent processes. Stochastic Process Appl, 1999, 84: 177–186

    Article  MATH  MathSciNet  Google Scholar 

  2. Brown A L, Page A. Elements of Functional Analysis. London-New York: Van Nostrand-Reinhold, 1970

    MATH  Google Scholar 

  3. Chen J, Jian S. Some limit theorems of killed Brownian motion. Sci China Math, 2012, 55: 497–514

    MathSciNet  Google Scholar 

  4. Chen J, Li H, Jian S. Some limit theorems for absorbing Markov processes. J Phys A Math Theor, 2012, doi: 10.1088/1751-8113/45/34/345003

    Google Scholar 

  5. Chen Z-Q, Kim P, Kumagai T. Global heat kernel estimates for symmetric jump processes. Trans Amer Math Soc, 2011, 363: 5021–5055

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen Z-Q, Kumagai T. A priori Hölder estimate, parabolic Hanack principle and heat kernel estimates for diffusions with jumps. Rev Mat Iberoamericana, 2010, 26: 551–589

    Article  MATH  MathSciNet  Google Scholar 

  7. Darroch J N, Seneta E. On quasi-stationary distributions in absorbing discrete-time finite Markov chains. J Appl Probab, 1965, 2: 88–100

    Article  MATH  MathSciNet  Google Scholar 

  8. Darroch J N, Seneta E. On quasi-stationary distributions in absorbing continous-time finite Markov chains. J Appl Probab, 1967, 4: 192–196

    Article  MATH  MathSciNet  Google Scholar 

  9. Davies E B. Heat Kernels and Spectral Theory. Cambridge: Cambridge University Press, 1989

    MATH  Google Scholar 

  10. Flaspohler D C. Quasi-stationary distributions for absorbing continuous-time denumerable Markov chains. Ann Inst Statist Math, 1973, 26: 351–356

    Article  MathSciNet  Google Scholar 

  11. Kim P, Song R. Two-sided estimates on the density of Brownian motion with singular drift. Illinois J Math, 2006, 50: 635–688

    MATH  MathSciNet  Google Scholar 

  12. Kim P, Song R. On dual processes of non-symmetric diffusions with measure-valued drifts. Stochastic Process Appl, 2008, 118: 790–817

    Article  MATH  MathSciNet  Google Scholar 

  13. Kim P, Song R. Intrinsic ultracontractivity of non-symmetric diffusion semigroups in bounded domains. Tohoku Math J, 2008, 60: 527–547

    Article  MATH  MathSciNet  Google Scholar 

  14. Kim P, Song R. Intrinsic ultracontractivity of non-symmetric diffusions with measure-valued drifts and potentials. Ann Probab, 2008, 36: 1904–1945

    Article  MATH  MathSciNet  Google Scholar 

  15. Kim P, Song R. Intrinsic ultracontractivity for non-symmetric Lévy processes. Forum Math, 2009, 21: 43–66

    MATH  MathSciNet  Google Scholar 

  16. Kim P, Song R. Stable process with singular drift. Stochastic Process Appl, 2014, 124: 2479–2516

    Article  MathSciNet  Google Scholar 

  17. Kim P, Song R. Dirichlet heat kernel estimates for stable processes with singular drift in unbounded C 1,1 open sets. Potential Anal, 2014, in press, doi: 10.1007/s11118-013-9393-4

    Google Scholar 

  18. Knobloch R, Partzsch L. Uniform conditional ergodicity and intrinsic ultracontractivity. Potential Anal, 2010, 33: 107–136

    MATH  MathSciNet  Google Scholar 

  19. Ma Z-M, Röckner M. Introduction to the Theory of (Non-Symmetric) Dirichlet Forms. Berlin: Springer, 1991

    Google Scholar 

  20. Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations. New York: Springer, 1983

    MATH  Google Scholar 

  21. Pinsky R G. The lifetimes of conditioned diffusion processes. Ann Inst H Poincaré Probab Statist, 1990, 26: 87–99

    MATH  MathSciNet  Google Scholar 

  22. Schaefer H H. Banach Lattices and Positive Operators. New York: Springer, 1974

    MATH  Google Scholar 

  23. Seneta E, Vere-Jones D. On quasi-stationary distributions in discrete-time Markov chains with a denumberable infinity of states. J Appl Probab, 1966, 3: 403–434

    MATH  MathSciNet  Google Scholar 

  24. van Doorn E A, Pollett P K. Quasi-stationary distributions. http://doc.utwente.nl/77521, 2011

    Google Scholar 

  25. Vondraeck Z. Basic potential theory of certain non-symmetric strictly α-stable processes. Glas Mat, 2002, 37: 211–233

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShouMei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Li, S. & Song, R. Quasi-stationarity and quasi-ergodicity of general Markov processes. Sci. China Math. 57, 2013–2024 (2014). https://doi.org/10.1007/s11425-014-4835-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-014-4835-x

Keywords

MSC(2010)

Navigation