Skip to main content
Log in

Chapman-Enskog as an application of the method for eliminating fast variables

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Although the Chapman-Enskog treatment of the Boltzmann equation is one of the first examples of the elimination of fast variables, it is not usually presented consistently from that point of view. Here it is developed systematically as a special case of the general method for eliminating fast variables from nonlinear equations. As a result certain ambiguities can be remedied. First, it is inconsistent with the separation of time scales to extend the phenomenological description of the gas by including some of the higher moments of the distribution function (such as the heat flow). In the application to the relativistic Boltzmann equation, the dilemma concerning the choice of the lowest order approximation is resolved. In the final section it is demonstrated that unsystematic elimination of fast variables leads to secular terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Chapman,Proc. R. Soc. Lond. A 93:1 (1916–1917); D. Enskog, Thesis, Uppsala (1917) [Both reprinted in S. G. Brush,Kinetic Theory, Vol. 3 (Pergamon, Oxford, 1972)].

    Google Scholar 

  2. S. Chapman and T. G. Cowling,The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, 1939).

  3. H. Grad, inHandbuch der Physik, Vol. 12, S. Flügge, ed. (Springer, Berlin, 1958).

    Google Scholar 

  4. P. Résibois and M. de Leener,Classical Kinetic Theory of Fluids (Wiley-Interscience, New York, 1977).

    Google Scholar 

  5. G. E. Uhlenbeck and G. W. Ford,Lectures in Statistical Mechanics (American Mathematical Society, Providence, Rhode Island, 1963); C. Cercignani,Mathematical Methods in Kinetic Theory (Plenum Press, New York, 1969), Chapters 5 and 6; C. Cercignani,Theory and Application of the Boltzmann Equation (Scottish Academic Press, Edinburgh, 1975).

    Google Scholar 

  6. C. F. Curtiss and J. O. Hirschfelder,J. Chem. Phys. 17:550 (1949); J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird,Molecular Theory of Gases and Liquids (Wiley, New York, 1954).

    Google Scholar 

  7. U. M. Titulaer,Physica 91A:321 (1978); U. Geigernnüller, U. M. Titulaer, and B. U. Felderhof,Physica 119A:41, 53 (1983).

    Google Scholar 

  8. C. W. Gardiner,Handbook of Stochastic Methods (Springer, Berlin, 1983), p. 218.

    Google Scholar 

  9. H. Haken,Handbuch des Physik, Vol. 25/2c, S. Flügge, ed. (Springer, Berlin, 1970); H. Haken,Synergetics, 2nd ed. (Springer, Berlin, 1978), p. 194.

    Google Scholar 

  10. N. G. van Kampen,Phys. Rep. 124:69 (1985).

    Google Scholar 

  11. U. M. Titulaer,Physica 100A:234 (1980).

    Google Scholar 

  12. R. E. Nettleton,J. Chem. Phys. 40:112 (1964);Physica 132A:143 (1985); I. Müller,Z. Physik 198:329 (1967); L. S. García-Colín, M. López de Haro, R. F. Rodríguez, J. Casas-Vázquez, and D. Jou,J. Stat. Phys. 37:465 (1984).

    Google Scholar 

  13. W. Israel,J. Math. Phys. 1:1163 (1963);Physica 106A:204 (1981).

    Google Scholar 

  14. J. Ehlers, inGeneral Relativity and Cosmology, Proceedings International School of Physics Enrico Fermi 1969 (Academic Press, New York, 1971).

    Google Scholar 

  15. J. M. Stewart,Non-Equilibrium Relativistic Kinetic Theory (Lecture Notes in Physics No. 10; Springer, Berlin, 1971).

    Google Scholar 

  16. S. R. de Groot, W. A. van Leeuwen, and C. G. van Weert,Relativistic Kinetic Theory (North-Holland, Amsterdam, 1980).

    Google Scholar 

  17. H. Grad,Phys. Fluids 6:147 (1963).

    Google Scholar 

  18. H. Grad,Commun. Pure Appl. Math. 2:331 (1947).

    Google Scholar 

  19. J. L. Synge,The Relativistic Gas (North-Holland, Amsterdam, 1957).

    Google Scholar 

  20. N. G. van Kampen,Physica 43:244 (1969).

    Google Scholar 

  21. F. Jüttner,Ann. Phys. (Leipzig)34:856;35:145 (1911).

    Google Scholar 

  22. C. Eckart,Phys. Rev. 58:919 (1940).

    Google Scholar 

  23. L. Landau and E. M. Lifshitz,Fluid Mechanics (Pergamon, Oxford, 1959), p. 499.

    Google Scholar 

  24. N. A. Chernikov,Phys. Lett. 5:115 (1963);Acta Phys. Polon. 27:465 (1964); B. Vignon,Ann. Inst. Henri Poincaré 10:31 (1969); C. Marle,Ann. Inst. Henri Poincaré 10:127 (1969).

    Google Scholar 

  25. H. Falk, private communication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Kampen, N.G. Chapman-Enskog as an application of the method for eliminating fast variables. J Stat Phys 46, 709–727 (1987). https://doi.org/10.1007/BF01013381

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01013381

Key words

Navigation