Skip to main content
Log in

Bimodality and long-range order in ideal Bose systems

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The cluster expansion for the classical and the quantum canonical partition function are related to the Bell polynomials. This observation is exploited in derivation of a set of recursion relations that render tractable numerical evaluation of quantities such as mean cluster size distributions and pressure isotherms. The exact volume dependences of properties of an ideal Bose gas are calculated under periodic boundary conditions. Numerical calculations with volume-independent cluster integrals show bimodal distributions in the mean cluster weight for two- and three-dimensional ideal Bose gases at sufficiently low temperature and high density. The variation of the size at which the liquid (condensate) peak appears indicates that the liquid clusters are macroscopic in macroscopic systems. The similarity between the Bose-Einstein condensation and the sol→gel transition in nonlinear chemically polymerizing systems is discussed. When the exact volume dependence of the cluster integrals is taken into account, the mean cluster weight distribution becomes “chair shaped” rather than bimodal and displays no diagonal long-range order in the canonical ensemble. The “Kac density” for an ideal Bose gas implies that in the canonical ensemble the Ursell function satisfies a cluster property in the limit in which the coordinates of the particles are widely separated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. F. M. Osborne,Phys. Rev. 76:396 (1949); J. M. Ziman,Philos. Mag. 44:548 (1953); D. L. Mills,Phys. Rev. 134:A306 (1964); B. M. Khorana and Douglass,Phys. Rev. 138:A35 (1965); D. A. Krueger,Phys. Rev. Lett. 19:563 (1967); D. F. Goble and L. E. H. Trainor,Can. J. Phys. 44:27 (1966); D. F. Goble and L. E. H. Trainor,Can. J. Phys. 46:1867 (1968).

    Google Scholar 

  2. R. K. Pathria,Phys. Rev. A 5:1451 (1972); S. Greenspoon and R. K. Pathria,Phys. Rev. A8:2657 (1973); S. Greenspoon and R. K. Pathria,Phys. Rev. A9:2103 (1974); M. N. Barber and M. E. Fisher,Phys. Rev. A8:1124 (1972); A. N. Chaba and R. K. Pathria,Phys. Rev. A11:1080 (1975).

    Google Scholar 

  3. R. K. Pathria,Statistical Mechanics (Pergamon Press, New York, 1978).

    Google Scholar 

  4. E. T. Bell,Ann. Math. 35:258 (1938).

    Google Scholar 

  5. U. Mohanty, Ph.D. thesis, Brown University (1980).

  6. U. Mohanty, A. Yang, and J. H. Gibbs, (in preparation).

  7. J. H. Gibbs, B. Bagchi, and U. Mohanty,Phys. Rev. B 24:2893 (1981).

    Google Scholar 

  8. J. A. Barker, P. J. Leonard, and A. Pompe,J. Chem. Phys. 44:4206 (1966).

    Google Scholar 

  9. F. E. Harris,J. Chem. Phys. 23:1518 (1955).

    Google Scholar 

  10. B. Bagchi, Ph.D. thesis, Brown University (1980).

  11. G. C. Rota,Finite Operator Calculus (Academic Press, New York, 1975); S. Roman and G. C. Rota,Adv. Math. 27:95 (1978).

    Google Scholar 

  12. U. Mohanty,J. Math. Phys. (July, 1982).

  13. G. E. Uhlenbeck and G. W. Ford, inLectures in Statistics Mechanics (American Mathematical Society, Providence, Rhode Island, 1963).

    Google Scholar 

  14. G. E. Uhlenbeck and L. Gropper,Phys. Rev. 41:79 (1932).

    Google Scholar 

  15. P. C. Hohenberg,Phys. Rev. 158:383 (1967).

    Google Scholar 

  16. J. J. Rehr and N. D. Mermin,Phys. Rev. B 1:3160 (1970).

    Google Scholar 

  17. Y. Imry,Physica 55:344 (1971).

    Google Scholar 

  18. A. Coniglio, V. DeAngelis, and A. Forlari,J. Phys. A: Math. Gen. 10:1123 (1977); see also D. Stauffer,Phys. Rep. 43:1 (1979).

    Google Scholar 

  19. E. Donoghue and J. H. Gibbs,J. Chem. Phys. 70:2346 (1979).

    Google Scholar 

  20. W. H. Stockmayer,J. Chem. Phys. 11:45 (1943).

    Google Scholar 

  21. M. Born and Fuchs,Proc. R. Soc. London Ser. A 166:391 (1938).

    Google Scholar 

  22. A. Walfisz,Z. Math. 19:300 (1924).

    Google Scholar 

  23. B. Bagchi and U. Mohanty (in preparation).

  24. M. Kac (unpublished work); see E. B. Davis,Commun. Math. Phys. 30:229 (1973).

    Google Scholar 

  25. R. Ziff, G. Uhlenbeck, and M. Kac,Phys. Rep. 32:169 (1977).

    Google Scholar 

  26. A. Oppenheim,Proc. London Math. Soc. 26:295 (1926); H. P. Boltes and B. Steinle,J. Math. Phys. 18:1275 (1977).

    Google Scholar 

  27. C. N. Yang,Rev. Mod. Phys. 34:694 (1962); O. Penrose and L. Onsager,Phys. Rev. 104:576 (1956).

    Google Scholar 

  28. J. T. Cannon,Commun. Math. Phys. 29:89 (1973).

    Google Scholar 

  29. J. T. Lewis and J. V. Pulé,Commun. Math. Phys. 36:1 (1974).

    Google Scholar 

  30. G. E. Uhlenbeck, P. C. Hemmer, and M. Kac,J. Math. Phys. 4:229 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohanty, U., Bagchi, B. & Gibbs, J.H. Bimodality and long-range order in ideal Bose systems. J Stat Phys 28, 685–710 (1982). https://doi.org/10.1007/BF01011876

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01011876

Key words

Navigation