Skip to main content
Log in

A soluble kinetic model for spinodal decomposition

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We compare the two-dimensional voter model with approximate theories for spinodal decomposition. The cluster size distribution and the short-time dynamics of the voter model are studied by means of a Monte Carlo simulation. The time-dependent structure factor and the long-time scaling of the voter dynamics are known analytically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. W. Koch, R. C. Desai, and F. F. Abraham,Phys. Rev. Lett. 49:923 (1982);Phys. Rev. A 27:2152 (1983).

    Google Scholar 

  2. T. M. Liggett,Interacting Particle Systems (Springer, Berlin, 1985), and references therein to previous work.

    Google Scholar 

  3. J. T. Cox and D. Griffeath,Ann. Prob. 14:347 (1986).

    Google Scholar 

  4. F. F. Abraham,Phys. Rev. C 53:93 (1979).

    Google Scholar 

  5. K. Binder, inNonlinear Systems in Physics, Chemistry and Biology, L. Arnold and R. Lefever, eds. (Springer, Berlin, 1981).

    Google Scholar 

  6. J. D. Gunton, M. San Miguel, and P. S. Sahni, inPhase Transitions and Critical Phenomena, Vol. 8, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1984).

    Google Scholar 

  7. J. L. Lebowitz, J. Marro, and M. H. Kalos,Commun. Solid. State Phys. 10:201 (1983).

    Google Scholar 

  8. N. van Kampen,J. Stat. Phys. 17:71 (1977).

    Google Scholar 

  9. R. Glauber,J. Math. Phys. 4:294 (1963).

    Google Scholar 

  10. M. Bramson and D. Griffeath,Ann. Prob. 7:418 (1973).

    Google Scholar 

  11. P. Major,Studia Sci. Math. Hung. 15:321 (1980).

    Google Scholar 

  12. E. Presutti and H. Spohn,Ann. Prob. 11:867 (1983).

    Google Scholar 

  13. F. Spitzer,Principles of Random Walk, 2nd ed. (Springer, Berlin, 1976).

    Google Scholar 

  14. P. Fratzl, J. L. Lebowitz, J. Marro, and M. H. Kalos,Acta Metall. 31:1849 (1983).

    Google Scholar 

  15. J. Marro, J. L. Lebowitz, and M. H. Kalos,Phys. Rev. Lett. 43:282 (1979).

    Google Scholar 

  16. K. Binder and C. Billotet,Z. Phys. B 32:495 (1979).

    Google Scholar 

  17. J. S. Langer, M. Bar'on, and H. D. Miller,Phys. Rev. A 11:1417 (1975).

    Google Scholar 

  18. M. Kimura,Proc. Natl. Acad. Sci. Genet. 1954:144 (1954).

    Google Scholar 

  19. S. Tavare,Theor. Popul. Biol. 26:119 (1984).

    Google Scholar 

  20. P. M. Morse and H. Feshbach,Methods of Theoretical Physics (McGraw-Hill, New York, 1953), p. 782.

    Google Scholar 

  21. D. Stauffer,Introduction to Percolation Theory (Taylor and Francis, 1985).

  22. D. Heermann,Z. Physik B 55:309 (1984).

    Google Scholar 

  23. R. C. Desai and A. Denton, inOn Growth and Form, N. Ostrowsky and H. E. Stanley, eds. (Nijhoff, 1986).

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to Nico van Kampen on the occasion of his 67th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheucher, M., Spohn, H. A soluble kinetic model for spinodal decomposition. J Stat Phys 53, 279–294 (1988). https://doi.org/10.1007/BF01011557

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01011557

Key words

Navigation