Skip to main content
Log in

Iterated networks and the spectra of renormalizable electromechanical systems

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Beginning with anLRC network with impedance functionZ(Ω), a sequence of iterated networksN k with impedance functionsZ‡ k(Ω), k= 1, 2, 3,..., is introduced. The asymptotic comportment ofZ‡ k(Ω) and the spectra ofN k are analyzed in terms of the Julia set ofZ. An example is given of an iterated network associated with a cascade of period-doubling bifurcations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Domany, S. Alexander, D. Bensimon, and L. P. Kandanoff, Solutions to the Schrödinger equation on some fractal lattices, preprint (1983).

  2. R. Rammal, Spectrum of harmonic excitations on fractals,J. Phys. (Paris) 45:191–206 (1984).

    Google Scholar 

  3. R. Rammal, On the nature of eigenstates on fractal structures,Phys. Rev. B 28:4871–4874 (1983).

    Google Scholar 

  4. R. Rammal and G. Toulouse, Spectrum of the Schrödinger equation on a self-similar structure,Phys. Rev. Lett. 49:1194–1197 (1982).

    Google Scholar 

  5. A. M. S. Tremblay and B. W. Southern, Scaling and density of states of fractal lattices from a generating function point of view,J. Phys. Lett. (Paris) 44:L-843–L-852 (1983).

    Google Scholar 

  6. M. F. Barnsley, J. S. Geronimo, and A. N. Harrington, Condensed Julia sets, with an application to a fractal lattice model Hamiltonian,Trans. Am. Math. Soc. (1984) (to be published).

  7. B. Derrida, L. De Seze, and C. Itzykison, Fractal structure of zeros in hierarchical models,J. Stat. Phys. 33:559–570 (1983).

    Google Scholar 

  8. H. F. Olsen,Dynamical Analogies, 2nd ed. (Van Nostrand, New York, 1958).

    Google Scholar 

  9. P. Blanchard, Complex analytic dynamics on the Riemann sphere,Bulletin A.M.S. 11:85–141 (1984).

    Google Scholar 

  10. M. P. Fatou, Sur les equations fonctionelles,Bull. Soc. Math. France 47:161–271 (1919);48:33–94, 208–314 (1919).

    Google Scholar 

  11. A. Denjoy, Sur l'itération des fonctions analytiques,C. R. Acad. Sci. 182:255–257 (1926).

    Google Scholar 

  12. G. Valiron, Sur l'itération des fonctions holomorphes dans un demi-plan,Bull. Sci. Math. (Ser. II) 55:105–128 (1931).

    Google Scholar 

  13. J. Wolff, Sur l'itération des fonctions holomorphes dans un région, et dont les valuers appartiennent à cette région,C. R. Acad. Sci. Paris 182:42, 43 (1926).

    Google Scholar 

  14. R. B. May, Simple mathematical models with very complicated dynamics,Nature 261:459–467 (1976).

    Google Scholar 

  15. P. J. Myrberg, Sur l'itération des polynomes réels quadratiques,J. Math. Pures Appl. 41:339–351 (1962).

    Google Scholar 

  16. J. Milnor and P. Thurston, On iterated maps of the interval, preprint.

  17. B. Derrida, A. Gervois, and Y. Pomeau, Universal metric properties of bifurcations of endomorphisms,J. Phys. A12:269 (1969).

    Google Scholar 

  18. M. Feigenbaum, Quantitative universality for a class of nonlinear transformations,J. Stat. Phys. 19:25–52 (1978).

    Google Scholar 

  19. A. Douady and J. Hubbard, On the dynamics of polynomial-like mappings, preprint (1984).

  20. B. Mandelbrot, Fractal aspects of the iteration ofz → λz (1−z),Ann. N. Y. Acad. Sci. 357:249–259 (1980); On the quadratic mappingz → z 2Μ for complexΜ andz: the fractal structure of itsM set and scaling,Physica D, 224–239 (1983).

    Google Scholar 

  21. R. Bott and R. J. Duffin, Impedance synthesis without the use of transformers,J. Appl. Phys. 20:816 (1949).

    Google Scholar 

  22. L. Weinberg,Network Analysis and Synthesis (McGraw-Hill, New York, 1962).

    Google Scholar 

  23. G. Kirchoff, über die Auflösung der Gleichungen, auf welche man bei der Untersuchungen der Linearen Vertailung Galvanisher Ströme gefürt wird,Poggendorf Ann. Phys. 72:497–508 (1847).

    Google Scholar 

  24. H. Whitney, Nonseparable and planar graphs,Trans. Am. Math. Soc. 34:339–362 (1932).

    Google Scholar 

  25. G. Julia, Mémoire sur l'itération des fonctions rationelles,J. Math. Pures Appl. 4:47–245 (1918).

    Google Scholar 

  26. B. Mandelbrot,The Fractal Geometry of Nature (W. H. Freeman, San Francisco, 1983).

    Google Scholar 

  27. H. Brolin, Invariant sets under iteration of rational functions,Ark. Mat. 6:103–144 (1965).

    Google Scholar 

  28. D. Sullivan, Itération des fonctions analytiques complexes,C. R. Acad. Sci. 294:301 (1982).

    Google Scholar 

  29. D. Sullivan, Quasi conformal homeomorphisms and dynamics III: Topological conjugacy classes of analytic endormorphisms, preprint (1983).

  30. M. F. Barnsley, J. S. Geronimo, and A. N. Harrington, Orthogonal polynomials associated with invariant measures on Julia sets,Bulletin A.M.S. 7:381–384 (1982).

    Google Scholar 

  31. D. Bessis and P. Moussa, Orthogonality properties of iterated polynomial mappings,Commun. Math. Phys. 88:503–529 (1983).

    Google Scholar 

  32. M. F. Barnsley and A. N. Harrington, Moments of balanced measures on Julia sets,Trans. Am. Math. Soc. 284:271–280 (1984).

    Google Scholar 

  33. A. Freire, A. Lopes, and R. Mané, An invariant measure for rational maps, preprint (1982).

  34. M. J. Ljubich, Entropy properties of rational endomorphisms of the Riemann sphere,Ergod. Th. Dyn. Syst. 3:351–383 (1983).

    Google Scholar 

  35. M. F. Barnsley and S. Demko, Iterated function systems and the global reconstruction of fractals,Proc. R. Soc. London (1984) (to be published).

  36. P. Collet and J. Eckmann,Iterated Maps on the Interval as Dynamical Systems (Birkhauser, Boston, 1980).

    Google Scholar 

  37. M. F. Barnsley, J. S. Geronimo, and A. N. Harrington, Geometry and combinators of Julia sets for real quadratic maps,J. Stat. Phys. 37:51–92 (1984).

    Google Scholar 

  38. D. Singer, Stable orbits and bifurcations of maps of the interval,SIAM J. Appl. Math. 35:260 (1978).

    Google Scholar 

  39. O. Lanford III, A computer assisted proof of the Feigenbaum conjectures,Bull. A.M.S. 6:427–434 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnsley, M.F., Morley, T.D. & Vrscay, E.R. Iterated networks and the spectra of renormalizable electromechanical systems. J Stat Phys 40, 39–67 (1985). https://doi.org/10.1007/BF01010526

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01010526

Key words

Navigation