Skip to main content

A Formal Setting for Network Dynamics

  • Chapter
  • First Online:
Complex Networks and Dynamics

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 683))

Abstract

This chapter is an introduction to coupled cell networks, a formal setting in which to analyse general features of dynamical systems that are coupled together in a network. Such networks are common in many areas of application. The nodes (‘cells’) of the network represent system variables, and directed edges (‘arrows’) represent how variables influence each other. Cells and arrows are assigned types, which determine the form of admissible differential equations-those compatible with the network structure. By analogy with the modern theory of dynamical systems, emphasis is placed on phenomena that are typical of entire classes of model equations with a given network structure, rather than on specific models. Such phenomena include symmetry and synchrony relations among cells, leading to a clustering effect embodied in a quotient network described by a balanced colouring. Rigid patterns of synchrony (those preserved by admissible perturbations) for equilibria and periodic states are classified by the balanced colourings. Bifurcations in which network structure can cause anomalous power-law growth rates are briefly mentioned. The formal concepts are motivated and explained in terms of typical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldis JW (2010) On balance. Ph.D. thesis, University of Warwick

    Google Scholar 

  • Antoneli F, Stewart I (2006) Symmetry and synchrony in coupled cell networks 1: fixed-point spaces. Int J Bifurcation Chaos 16:559–577

    Article  Google Scholar 

  • Antoneli F, Stewart I (2007) Symmetry and synchrony in coupled cell networks 2: group networks. Int J Bifurcation Chaos 17:935–951

    Article  Google Scholar 

  • Antoneli F, Stewart I (2008) Symmetry and synchrony in coupled cell networks 3: exotic patterns. Int J Bifurcation Chaos 18:363–373

    Article  Google Scholar 

  • Arnold VI (1963) Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian. Uspehi Mat Nauk 18:13–40

    Google Scholar 

  • Brandt H (1927) Über eine Verallgemeinerung des Gruppenbegriffes. Math Ann 96:360–366

    Article  Google Scholar 

  • Brown R (1987) From groups to groupoids: a brief survey. Bull Lond Math Soc 19:113–134

    Article  Google Scholar 

  • Buono P-L (2001) Models of central pattern generators for quadruped locomotion II: secondary gaits. J Math Biol 42:327–346

    Article  Google Scholar 

  • Buono P-L, Golubitsky M (2001) Models of central pattern generators for quadruped locomotion: I. Primary gaits. J Math Biol 42:291–326

    Article  Google Scholar 

  • Collins JJ, Stewart I (1993a) Hexapodal gaits and coupled nonlinear oscillator models. Biol Cybern 68:287–298

    Article  Google Scholar 

  • Collins JJ, Stewart I (1993b) Coupled nonlinear oscillators and the symmetries of animal gaits. J Nonlinear Sci 3:349–392

    Article  Google Scholar 

  • Deville L, Lerman E (2015) Modular dynamical systems on networks. J Eur Math Soc 17:2977–3013. http://arxiv.org/abs/1303.3907

    Article  Google Scholar 

  • Dias APS, Stewart I (2004) Symmetry groupoids and admissible vector fields for coupled cell networks. J Lond Math Soc 69:707–736

    Article  Google Scholar 

  • Elmhirst T, Golubitsky M (2006) Nilpotent Hopf bifurcations in coupled cell systems. SIAM J Appl Dyn Syst 5: 205–251

    Article  Google Scholar 

  • Euler L (1741) Solutio problematis ad geometriam situs pretinentis. Commentarii Academiae Scientiarum Petropolitanae 8:128–140. Reprinted in Opera Omnia: Series 1, 7 1–10. Reproduced at http://math.dartmouth.edu/euler/docs/originals/E053.pdf

  • Golubitsky M, Schaeffer DG (1985) Singularities and groups in bifurcation theory I. Applied mathematics series, vol 51. Springer, New York

    Google Scholar 

  • Golubitsky M, Stewart I (1986) Hopf bifurcation with dihedral group symmetry: coupled nonlinear oscillators. In: Golubitsky M, Guckenheimer J (eds) Multiparameter bifurcation theory. Proceedings of the AMS-IMS-SIAM joint summer research conference, July 1985, Arcata. Contemporary mathematics, vol 56. American Mathematical Society, Providence RI, pp 131–173

    Google Scholar 

  • Golubitsky M, Stewart I (2002a) The symmetry perspective: from equilibria to chaos in phase space and physical space. Progress in mathematics, vol 200. Birkhäuser, Basel

    Google Scholar 

  • Golubitsky M, Stewart I (2002b) Patterns of oscillation in coupled cell systems. In: Holmes P, Newton P, Weinstein A (eds) Geometry, dynamics and mechanics: 60th birthday volume for J.E. Marsden. Springer, New York, pp 243–286

    Google Scholar 

  • Golubitsky M, Stewart I (2006) Nonlinear dynamics of networks: the groupoid formalism. Bull Am Math Soc 43:305–364

    Article  Google Scholar 

  • Golubitsky M, Stewart I (2016a) Homeostasis, singularities, and networks. J Math Biol. doi:10.1007/s00285-016-1024-2

    Google Scholar 

  • Golubitsky M, Stewart I (2016b) Coordinate changes for network dynamics (to appear)

    Google Scholar 

  • Golubitsky M, Stewart I, Schaeffer DG (1988) Singularities and groups in bifurcation theory II. Applied mathematics series, vol 69. Springer, New York

    Google Scholar 

  • Golubitsky M, Stewart I, Török A (2005) Patterns of synchrony in coupled cell networks with multiple arrows. SIAM J Appl Dyn Syst 4:78–100

    Article  Google Scholar 

  • Golubitsky M, Postlethwaite C, Shiau L-J, Zhang Y (2009) The feed-forward chain as a filter amplifier motif. In: Josíc K, Matias M, Romo R, Rubin J (eds) Coherent behavior in neuronal networks. Springer, New York, pp 95–120

    Chapter  Google Scholar 

  • Golubitsky M, Romano D, Wang Y (2010) Network periodic solutions: full oscillation and rigid synchrony. Nonlinearity 23:3227–3243

    Article  Google Scholar 

  • Golubitsky M, Romano D, Wang Y (2012) Network periodic solutions: patterns of phase-shift synchrony. Nonlinearity 25:1045–1074

    Article  Google Scholar 

  • Guckenheimer J, Holmes P (1983) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer, New York

    Book  Google Scholar 

  • Hassard BD, Kazarinoff ND, Wan Y-H (1981) Theory and applications of Hopf bifurcation. Cambridge University Press, Cambridge

    Google Scholar 

  • Higgins PJ (1971) Notes on categories and groupoids. Van Nostrand Reinhold mathematical studies, vol 32. Van Nostrand Reinhold, London

    Google Scholar 

  • Hirsch MW, Smale S (1974) Differential equations, dynamical systems, and linear algebra. Academic, New York

    Google Scholar 

  • Katok A, Hasselblatt B (1995) Introduction to the modern theory of dynamical systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kuramoto Y (1984) Chemical oscillations, waves, and turbulence. Springer, Berlin

    Book  Google Scholar 

  • McCullen NJ, Mullin T, Golubitsky M (2007) Sensitive signal detection using a feed-forward oscillator network. Phys Rev Lett 98:254101

    Article  Google Scholar 

  • Nijholt E, Rink B, Sanders J (2016) Graph fibrations and symmetries of network dynamics. J Differ Equ (to appear)

    Google Scholar 

  • Poincaré H (1881) Mémoire sur les courbes définiés par une équation différentielle. J Math 7:375–422

    Google Scholar 

  • Poincaré H (1882) Mémoire sur les courbes définiés par une équation différentielle. J Math 8:251–296

    Google Scholar 

  • Poincaré H (1885) Mémoire sur les courbes définiés par une équation différentielle. J Math 1:167–244

    Google Scholar 

  • Poincaré H (1886) Mémoire sur les courbes définiés par une équation différentielle. J Math 2:151–217

    Google Scholar 

  • Poincaré H (1892) Les Méthodes Nouvelles de la Mécanique Céleste, vol 1. Gauthier-Villars, Paris

    Google Scholar 

  • Poincaré H (1893) Les Méthodes Nouvelles de la Mécanique Céleste, vol 2. Gauthier-Villars, Paris

    Google Scholar 

  • Poincaré H (1899) Les Méthodes Nouvelles de la Mécanique Céleste, vol 3. Gauthier-Villars, Paris

    Google Scholar 

  • Rink B, Sanders J (2012) Coupled cell networks: semigroups, Lie algebras, and normal forms. arXiv:1209.3209 [math.DS]

    Google Scholar 

  • Rink B, Sanders J (2013a) Coupled cell networks and their hidden symmetries. arXiv:1304.1460 [math.DS]

    Google Scholar 

  • Rink B, Sanders J (2013b) Amplified Hopf bifurcations in feed-forward networks. SIAM J Appl Dyn Syst 12:1135–1157

    Article  Google Scholar 

  • Rink B, Sanders J (2014) Coupled cell networks: semigroups, Lie algebras and normal forms. Trans Am Math Soc. doi:http://dx.doi.org/10.1090/S0002-9947-2014-06221-1

    Google Scholar 

  • Smale S (1967) Differentiable dynamical systems. Bull Am Math Soc 73:747–817

    Article  Google Scholar 

  • Stewart I (2014) Synchrony-breaking bifurcations at a simple real eigenvalue for regular networks 2: higher-dimensional cells. SIAM J Appl Dyn Syst 13:129–156. doi:10.1137/130917636

    Article  Google Scholar 

  • Stewart I, Golubitsky M (2011) Synchrony-breaking bifurcations at a simple real eigenvalue for regular networks 1: 1-dimensional cells. SIAM J Appl Dyn Syst 10:1404–1442. doi:10.1137/110825418

    Article  Google Scholar 

  • Stewart I, Parker M (2007) Periodic dynamics of coupled cell networks I: rigid patterns of synchrony and phase relations. Dyn Syst 22:389–450

    Article  Google Scholar 

  • Stewart I, Parker M (2008) Periodic dynamics of coupled cell networks II: cyclic symmetry. Dyn Syst 23:17–41

    Article  Google Scholar 

  • Stewart I, Golubitsky M, Pivato M (2003) Symmetry groupoids and patterns of synchrony in coupled cell networks. SIAM J Appl Dyn Syst 2:609–646

    Article  Google Scholar 

  • Topp B, Promislow K, De Vries G, Miura RM, Finegood DT (2000) A model of β-cell mass, insulin, and glucose kinetics: pathways to diabetes. J Theor Biol 206:605–619

    Article  Google Scholar 

  • Wilson RJ (1985) Introduction to graph theory, 3rd edn. Longman, Harlow

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Stewart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stewart, I. (2016). A Formal Setting for Network Dynamics. In: Commendatore, P., Matilla-García, M., Varela, L., Cánovas, J. (eds) Complex Networks and Dynamics. Lecture Notes in Economics and Mathematical Systems, vol 683. Springer, Cham. https://doi.org/10.1007/978-3-319-40803-3_10

Download citation

Publish with us

Policies and ethics