Skip to main content
Log in

On birth and death processes in symmetric random environment

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We prove a limit theorem for a process in a random one-dimensional medium, which has been considered before as a model for hopping conduction in a disordered medium. To the edge between the two integersj and (j+ 1) a rate λj > 0 is attached. Theseλ j :j integral are taken as independent, identically distributed random variables, and represent the medium. For given values λj, X(t) is a Markov chain in continuous time which jumps fromj to (j + 1) and from (j + 1) toj at the same rate λj. We show that in many cases there exists normalizing constants y(t) (which tend to oo witht) such that the distribution of X(t)/γ(t), or more generally of the whole processX(st)/γ(t) S⩾0, converges to a limit as t→ ∞. The limit process is continuous and self-similar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Alexander, J. Bernasconi, W. R. Schneider, and R. Orbach, Excitation dynamics in random one-dimensional system,Rev. Mod. Phys. 53:175–198 (1981).

    Google Scholar 

  2. V. V. Anshelevic, K. M. Khanin, and Ya. G. Sinai, Symmetric random walks in random environments,Commun. Math. Phys. 85:449–470 (1982).

    Google Scholar 

  3. V. V. Anshelevich and A. V. Vologodskii, Laplace operator and random walk on onedimensional nonhomogeneous lattice,J. Stat. Phys. 25:419–430 (1981).

    Google Scholar 

  4. J. Bernasconi and H. U. Beyeler, Some comments on hopping in random one-dimensional systems,Phys. Rev. B 21:3745–3747 (1980).

    Google Scholar 

  5. J. Bernasconi, W. R. Schneider, and W. Wyss, Diffusion and hopping conductivity in disordered one-dimensional lattice systems,Z. Phys. B 37:175–184 (1980).

    Google Scholar 

  6. J. Bernasconi and W. R. Schneider, Classical hopping conduction in random one-dimensional systems: non-universal limit theorems and quasi-localization effects,Phys. Rev. Lett. 47:1643–1647 (1981).

    Google Scholar 

  7. J. Bernasconi and W. R. Schneider, Diffusion in one-dimensional lattice system with random transfer rates, inLecture Notes in Physics, No. 153 (Springer-Verlag, Berlin, 1982), pp. 389–393.

    Google Scholar 

  8. J. Bernasconi and W. R. Schneider, Diffusion in random one-dimensional systems,J. Stat. Phys. 30:355–362 (1983).

    Google Scholar 

  9. P. Billingsley,Convergence of Probability Measures (John Wiley & Sons, New York, 1968).

    Google Scholar 

  10. R. M. Blumenthal and R. K. Getoor,Markov Processes and Potential Theory (Academic Press, New York, 1968).

    Google Scholar 

  11. B. Derrida and Y. Pomeau, Classical diffusion in a random chain,Phys. Rev. Lett. 48:627–630 (1982).

    Google Scholar 

  12. R. M. Dudley, Distances of probability measures and random variables,Ann. Math. Statist. 39:1563–1572 (1968).

    Google Scholar 

  13. W. Feller,An Introduction to Probability Theory and Its Applications, Vol. II, 2nd ed. (John Wiley & Sons, New York, 1971).

    Google Scholar 

  14. K. Ito, Stochastic processes, Lecture notes, No. 16, Aarhus University (1969).

  15. T. Kaijser, A note on random continued fractions, inProbability and Mathematical Statistics: Essays in Honor of Carl-Gustav Esseen, A. Gut and L. Holst, eds. (Uppsala University, Uppsala, 1983), pp. 74–83.

    Google Scholar 

  16. S. Karlin and H. M. Taylor, A first course in stochastic processes, 2nd ed. (Academic Press, New York, 1975).

    Google Scholar 

  17. S. M. Kozlov, Averaging of random operators,Mat. Sborn. 113:302–308 (1980) (translated inMath. USSR, Sbornik 37:167–180).

    Google Scholar 

  18. R. Künnemann, The diffusion limit for reversible jump processes on ℤd with ergodic random bond coefficients,Commun. Math. Phys. 90:27–68 (1983).

    Google Scholar 

  19. T. Lindvall, Weak convergence of probability measures and random functions in the function space D[0, ∞),J. Appl. Prob. 10:109–121 (1973).

    Google Scholar 

  20. G. C. Papanicolaou and S. R. S. Varadhan, Boundary value problems with rapidly oscillating random coefficients,Coll. Math. Soc. János Bolyai, 27, Random Fields, Vol. 2 (North-Holland, Amsterdam, 1981), pp. 835–873.

    Google Scholar 

  21. W. R. Schneider, Hopping transport in disordered one-dimensional lattice systems: random walk in a random medium, inLecture Notes in Physics, No. 173 (Springer-Verlag, Berlin, 1982), pp. 289–303.

    Google Scholar 

  22. S. Schumacher, Diffusions with random coefficients, Ph.D. thesis, University of California, Los Angeles, 1984.

    Google Scholar 

  23. A. V. Skorohod, Limit theorems for stochastic processes,Theory Prob. Appl. 1:262–290 (1956) (English transi.).

    Google Scholar 

  24. M. J. Stephen and R. Kariotes, Diffusion in a one-dimensional disordered system,Phys. Rev. B 26:1917–1925 (1982).

    Google Scholar 

  25. C. J. Stone, Limit theorems for random walks, birth and death processes and diffusion processes,Il. J. Math. 7:638–660 (1963).

    Google Scholar 

  26. C. Stone, Weak convergence of stochastic processes defined on semi-infinite time intervals,Proc. Am. Math. Soc. 14:694–696 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawazu, K., Kesten, H. On birth and death processes in symmetric random environment. J Stat Phys 37, 561–576 (1984). https://doi.org/10.1007/BF01010495

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01010495

Key words

Navigation