Skip to main content
Log in

Birth and death processes in interactive random environments

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

This paper studies birth and death processes in interactive random environments where the birth and death rates and the dynamics of the state of the environment are dependent on each other. Two models of a random environment are considered: a continuous-time Markov chain (finite or countably infinite) and a reflected (jump) diffusion process. The background is determined by a joint Markov process carrying a specific interactive mechanism, with an explicit invariant measure whose structure is similar to a product form. We discuss a number of queueing and population-growth models and establish conditions under which the above-mentioned invariant measure can be derived. Next, an analysis of the rate of convergence to stationarity is performed for the models under consideration. We consider two settings leading to either an exponential or a polynomial convergence rate. In both cases we assume that the underlying environmental Markov process has an exponential rate of convergence, but the convergence rate of the joint Markov process is determined by certain conditions on the birth and death rates. To prove these results, a coupling method turns out to be useful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Formally speaking, we deal with a family of birth–death processes depending on the parameter \(z\in {{\mathcal {Z}}}\) and a family of environmental processes depending on the parameter \(n\in {\mathbb N}\).

  2. The domain and the reflection type may also depend on n; a general type of dependence is encrypted in the symbol \({{\mathcal {A}}}_n\) for the generator of the environmental diffusion.

  3. We do not discuss at this point the exact conditions guaranteeing the existence and uniqueness of process \(\widetilde{Z}_n(t)\) in a general setting. In the considered examples, the existence and uniqueness will be directly verified.

References

  1. Bacaër, N., Ed-Darraz, A.: On linear birth-and-death processes in a random environment. J. Math. Biol. 69(1), 73–90 (2014)

    Article  Google Scholar 

  2. Browne, S., Whitt, W.: Piecewise-linear diffusion processes. Adv. Queueing Theory Methods Open Problems 4, 463–480 (1995)

    Google Scholar 

  3. Butkovsky, O.: Subgeometric rates of convergence of Markov processes in the Wasserstein metric. Ann. Appl. Probab. 24(2), 526–552 (2014)

    Article  Google Scholar 

  4. Cogburn, R.: Markov chains in random environments: the case of Markovian environments. Ann. Probab. 8(5), 908–916 (1980)

    Article  Google Scholar 

  5. Cogburn, R., Torrez, W.C.: Birth and death processes with random environments in continuous time. J. Appl. Probab. 18(1), 19–30 (1981)

    Article  Google Scholar 

  6. Cornez, R.: Birth and death processes in random environments with feedback. J. Appl. Probab. 24(1), 25–34 (1987)

    Article  Google Scholar 

  7. Das, A.: Constructions of Markov processes in random environments which lead to a product form of the stationary measure. Markov Process. Related Fields 23(2), 211–232 (2017)

    Google Scholar 

  8. Dieker, A., Moriarty, J.: Reflected Brownian motion in a wedge: sum-of-exponential stationary densities. Electron. Commun. Probab. 14, 1–16 (2009)

    Article  Google Scholar 

  9. Douc, R., Fort, G., Guillin, A.: Subgeometric rates of convergence of \(f\)-ergodic strong Markov processes. Stoch. Process. Appl. 119(3), 897–923 (2009)

    Article  Google Scholar 

  10. Economou, A.: Generalized product-form stationary distributions for Markov chains in random environments with queueing applications. Adv. Appl. Probab. 37(1), 185–211 (2005)

    Article  Google Scholar 

  11. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 1. Wiley, Hoboken (1950)

    Google Scholar 

  12. Gannon, M., Pechersky, E., Suhov, Y., Yambartsev, A.: Random walks in a queueing network environment. J. Appl. Probab. 53(2), 448–462 (2016)

    Article  Google Scholar 

  13. Gersende, F., Roberts, G.O.: Subgeometric ergodicity of strong Markov processes. Ann. Appl. Probab. 15(2), 1565–1589 (2005)

    Google Scholar 

  14. Guillemin, F., Simonian, A.: Transient characteristics of an \(M/M/\infty \) system. Adv. Appl. Probab. 27(3), 862–888 (1995)

    Article  Google Scholar 

  15. Harrison, J.M., Reiman, M.I.: On the distribution of multidimensional reflected Brownian motion. SIAM J. Appl. Math. 41(2), 345–361 (1981)

    Article  Google Scholar 

  16. Karatzas, I., Shreve, S.: Stochastic Calculus and Brownian Motion. Springer (1991)

  17. Kou, S.C., Kou, S.G.: Modeling growth stocks via birth–death processes. Adv. Appl. Probab. 35(3), 641–664 (2003)

    Article  Google Scholar 

  18. Krenzler, R., Daduna, H.: Loss systems in a random environment: steady state analysis. Queueing Syst. 80(1), 127–153 (2015)

    Article  Google Scholar 

  19. Krenzler, R., Daduna, H., Otten, S.: Jackson networks in nonautonomous random environments. Adv. Appl. Probab. 48(2), 315–331 (2016)

    Article  Google Scholar 

  20. Kurtz, T., Stockbridge, R.: Stationary solutions and forward equations for controlled and singular martingale problems. Electron. J. Probab. 6, 1–52 (2001)

    Article  Google Scholar 

  21. Lindvall, T.: A note on coupling of birth and death processes. J. Appl. Probab. 16(3), 505–512 (1979)

    Article  Google Scholar 

  22. Lindvall, T.: Lectures on the Coupling Method. Dover, New York (1992)

    Google Scholar 

  23. Liu, Y., Zhang, H., Zhao, Y.: Subgeometric ergodicity for continuous-time Markov chains. J. Math. Anal. Appl. 368(1), 178–189 (2010)

    Article  Google Scholar 

  24. Mao, Y.: Ergodic degrees for continuous-time Markov chains. Sci. China Ser. A Math. 47(2), 161–174 (2004)

    Article  Google Scholar 

  25. Mazumdar, R.R., Guillemin, F.M.: Forward equation for reflected diffusions with jumps. Appl. Math. Optim. 33, 81–102 (1996)

    Article  Google Scholar 

  26. Meyn, S.P., Tweedie, R.L.: Stability of Markovian processes I: criteria for discrete-time chains. Adv. Appl. Probab. 24(3), 542–574 (1992)

    Article  Google Scholar 

  27. Meyn, S.P., Tweedie, R.L.: Stability of Markovian processes II: continuous-time processes and sampled chains. Adv. Appl. Probab. 25(3), 487–517 (1993)

    Article  Google Scholar 

  28. Meyn, S.P., Tweedie, R.L.: Stability of Markovian processes III: Foster–Lyapunov criteria for continuous-time processes. Adv. Appl. Probab. 25(3), 518–548 (1993)

    Article  Google Scholar 

  29. Norris, J.R.: Markov Chains. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  30. Otten, S., Krenzler, R., Daduna, H., Kruse, K.: Queues in a random environment. arXiv:2006.15712 (2020)

  31. Pang, G., Sarantsev, A., Belopolskaya, Y., Suhov, Y.: Stationary distributions and convergence for \(M/M/1\) queues in interactive random environment. Queueing Syst. 94(3), 357–392 (2020)

    Article  Google Scholar 

  32. Prodhomme, A., Strickler, É.: Large population asymptotics for a multitype stochastic SIS epidemic model in randomly switched environment. arXiv:2107.05333 (2021)

  33. Ross, S.M.: Introduction to Probability Models, 12th edn. Academic Press, London (2019)

    Google Scholar 

  34. Sandrić, N., Arapostathis, A., Pang, G.: Subexponential upper and lower bounds in Wasserstein distance for Markov processes. Appl. Math. Optim. 85(3), 1–45 (2022)

    Article  Google Scholar 

  35. Sarantsev, A.: Explicit rates of exponential convergence for reflected jump-diffusions on the half-line. ALEA Latin Am. J. Probab. Math. Stat. 13, 1069–1093 (2016)

    Article  Google Scholar 

  36. Sarantsev, A.: Penalty method for obliquely reflected diffusions. Lith. Math. J. 61, 518–549 (2021)

    Article  Google Scholar 

  37. Sarantsev, A.: Sub-exponential rate of convergence to equilibrium for processes on the half-line. Stat. Probab. Lett. 175, 109115 (2021)

    Article  Google Scholar 

  38. Soukhov, I.M., Kelbert, M.: Probability and Statistics by Example: Markov Chains: A Primer in Random Processes and Their Applications. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  39. Stadie, W.: The busy period of the queueing system \(M/G/\infty \). J. Appl. Probab. 22, 697–704 (1985)

    Article  Google Scholar 

  40. Stroock, D.W., Varadhan, S.S.: Diffusion processes with boundary conditions. Commun. Pure Appl. Math. 24(2), 147–225 (1971)

    Article  Google Scholar 

  41. Tanaka, H.: Stochastic differential equations with reflecting boundary condition in convex regions. Hiroshima Math. J. 9(1), 163–177 (1979)

    Article  Google Scholar 

  42. Torrez, W.C.: The birth and death chain in a random environment: instability and extinction theorems. Ann. Probab. 6(6), 1026–1043 (1978)

    Article  Google Scholar 

  43. Torrez, W.C.: Calculating extinction probabilities for the birth and death chain in a random environment. J. Appl. Probab. 16(4), 709–720 (1979)

    Article  Google Scholar 

  44. Van Doorn, E.A.: Conditions for exponential ergodicity and bounds for the decay parameter of a birth–death process. Adv. Appl. Probab. 17(3), 514–530 (1985)

    Article  Google Scholar 

  45. Van Doorn, E.A.: Rate of convergence to stationarity of the system \(M/M/N/N+ R\). Theory Probab. 19(2), 336–350 (2011)

    Google Scholar 

  46. Van Doorn, E.A., Zeifman, A.I.: On the speed of convergence to stationarity of the Erlang loss system. Queueing Syst. 63(1), 241–252 (2009)

    Article  Google Scholar 

  47. van Doorn, E.A., Zeifman, A.I., Panfilova, T.L.: Bounds and asymptotics for the rate of convergence of birth–death processes. Theory Probab. Appl. 54(1), 97–113 (2010)

    Article  Google Scholar 

  48. Ward, A.R., Glynn, P.W.: Properties of the reflected Ornstein–Uhlenbeck process. Queueing Syst. 44(2), 109–123 (2003)

    Article  Google Scholar 

  49. Williams, R.J.: Semimartingale reflecting Brownian motions in the orthant. IMA Vol. Math. Appl. 71, 125–137 (1995)

    Google Scholar 

  50. Zeifman, A.I.: Some estimates of the rate of convergence for birth and death processes. J. Appl. Probab. 28(2), 268–277 (1991)

    Article  Google Scholar 

  51. Zeifman, A.I.: Upper and lower bounds on the rate of convergence for nonhomogeneous birth and death processes. Stoch. Process. Appl. 59(1), 157–173 (1995)

    Article  Google Scholar 

  52. Zeifman, A.I., Panfilova, T.L.: On convergence rate estimates for some birth and death processes. J. Math. Sci. 221(4), 616–623 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

G. Pang was supported in part by NSF grant DMS-2216765. A. Sarantsev thanks Department of Mathematics and Statistics at the University of Nevada, Reno, for the welcoming atmosphere for research. Y. Suhov thanks Department of Mathematics at the Pennsylvania State University for hospitality and support. Y. Suhov thanks IHES, Bures-sur-Yvette, whose stimulating environment provides a constant source of inspiration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guodong Pang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Appendix A: Proofs of Theorems 2.1 and 3.1

Proof of Theorem 2.1

The irreducibility and aperiodicity properties are straightforward. For the measure \(\eta (n,z)\) in (2.9) to be finite, by Assumption 2.2,

$$\begin{aligned} \sum _{(n,z)} \eta (n,z) = \sum _{(n,z)} r_n(z) v(z) =\Xi < \infty . \end{aligned}$$

To verify that \(\eta (n,z)\) in (2.9) is an invariant measure, we prove that \(\eta ' {\mathbf {R}}=0\):

$$\begin{aligned} \begin{aligned} -\eta (n,z)&R[(n,z), (n,z)] \\&= \eta (n-1,z) R[(n-1,z),(n,z)] + \eta (n+1,z) R[(n+1,z),(n,z)] \\&\qquad + \sum _{z'\ne z} \eta (n,z') R[(n,z'), (n,z)], \quad n=1,2,\ldots ,\quad z \in {\mathcal {Z}};\\ -\eta (0,z)&R[(0,z),(0,z)] \\&= \eta (1,z) R[(1,z),(0,z)] + \sum _{z'\ne z} \eta (0,z') R[(0,z'), (0,z), n = 0, \quad z \in {\mathcal {Z}}. \end{aligned} \end{aligned}$$
(6.1)

For (6.1) with \(n \ge 1\), the left-hand side is

$$\begin{aligned}&\eta (n,z) \sum _{(n',z') \ne (n,z)} R[(n,z),(n',z')] \\&= \eta (n,z) \big ( R[(n,z),(n+1,z)] + R[(n,z), (n-1,z)] + \sum _{z' \ne z} R[(n,z), (n,z')] \big ) \\&= r_n(z) v(z) \big ( \lambda _n(z) + \mu _n(z) + \sum _{z'\ne z} r_n(z)^{-1} \tau _n(z,z') \big ) \\&= r_n(z) v(z) \big ( \lambda _n(z) + \mu _n(z) \big ) + v(z) \sum _{z'\ne z} \tau _n(z,z'), \end{aligned}$$

and the right-hand side is equal to

$$\begin{aligned}&r_{n-1}(z) v(z)\lambda _{n-1}(z) + r_{n+1}v(z) \mu _{n+1}(z) + \sum _{z'\ne z} r_n(z') v(z') r_n(z')^{-1} \tau _n(z',z) \\&= v(z)\big ( r_{n-1}(z) \lambda _{n-1}(z) + r_{n+1} \mu _{n+1}(z) \big ) + \sum _{z'\ne z} v(z') \tau _n(z',z). \end{aligned}$$

We get equality thanks to the assumption in (2.6) and the detailed balance equation in (2.3). For (6.1) with \(n = 0\), the left-hand side is

$$\begin{aligned}&\eta (0,z) \sum _{z'\ne z} R[(0,z),(0,z')] = r_0(z) v(z) \big (R[(0,z),(1,z)] + \sum _{z' \ne z} R[(0,z), (0,z')] \big ) \\&= r_0(z) v(z) \big (\lambda _0(z) + \sum _{z' \ne z} r_0(z)^{-1} \tau _0(z,z') \big ) = r_0(z) v(z) \lambda _0(z) + v(z) \sum _{z' \ne z} \tau _0(z,z') \big ), \end{aligned}$$

and the right-hand side is

$$\begin{aligned}&r_1(z) v(z) \mu _1(z) + \sum _{z'\ne z} r_0(z') v(z') r_0(z')^{-1} \tau _0(z',z)\\&\quad = r_1(z) v(z) \mu _1(z) + \sum _{z'\ne z} v(z') \tau _0(z',z). \end{aligned}$$

This again leads to the equality thanks to (2.6) and (2.4) for \(n=0\). Thus we have shown that \(\pi (n,z)\) in (2.8) is an invariant probability measure. The positive recurrence property follows from [29, Theorem 3.5.3] (see also [38, Theorem 2.7.18]). The ergodicity property of convergence in total variation follows from [26]. \(\square \)

Proof of Theorem 3.1

The proof follows from an analogous argument as that of Theorem 3.1 in [31], so we only highlight the differences. We apply [20], and use their notation as follows: let \(E = {{\mathbb {N}}}\times {\mathcal {Z}}\) and \(U=\{0,1,\ldots ,m\}\), where “0" indicates \({\mathcal {Z}}\) and \(i=1,\ldots ,m\) for the faces \(F_1,\ldots , F_m\) of the boundary, and for \(n\in {{\mathbb {N}}}\), \(z\in {\mathcal {Z}}\) and \(u \in U\),

$$\begin{aligned} \mu _0(\{u\}\times \{n\}\times \mathrm{d}z)&= \mathbf{1}_{u=0} r_n(z) \nu (\mathrm{d}z),\quad \mu _1(\{u\}\times \{n\}\times \mathrm{d}z) = \mathbf{1}_{u\ne 0} r_n(z) \nu _i({\textbf {d}}z),\\ \mu _0^E(\{n\}\times \mathrm{d}z)&= r_n(z) \nu (\mathrm{d}z),\quad \nu _1^E(\{n\}\times \mathrm{d}z) = r_n(z) \big (\nu _{F_1}(\mathrm{d}z) + \cdots + \nu _{F_m}(\mathrm{d}z) \big ),\\ \eta _0((n,z), \{u\})&= \mathbf{1}_{u=0}, \quad \eta _1((n,z), \{u\}) = \mathbf{1}_{u\ne 0}, \\ Af((n,z),u)&:= \beta _n^{-1} r_n(z) {\mathcal {L}} f(n,z),\\ Bf((n,z),u)&:= \mathbf{1}_{u\ne 0, z \in \partial D_i, i=1,\ldots ,m} \gamma _u(z) \cdot \nabla f(z). \end{aligned}$$

To check [20, Condition 1.2] on the absolutely continuous generator A and the singular generator B, we can verify the conditions (i)–(v) in the same way as in the proof of [31, Theorem 3.1]. For the main condition in [20, Theorem 1.7, (1.17)], we need to show that the generators A and B satisfy

$$\begin{aligned} \int _{E\times U} Af(x,u) \mu _0(\mathrm{d}x\times \mathrm{d}u) + \int _{E\times U} Bf(x,u) \mu _1(\mathrm{d}x\times \mathrm{d}u) =0. \end{aligned}$$
(6.2)

By the definitions of A and B, we can write the left-hand side as

$$\begin{aligned}&\sum _{n=0}^\infty \int _{{\mathcal {Z}}}\beta _n^{-1} r_n(z) {\mathcal {M}}_zf(n,z) \nu (\mathrm{d}z)\\&+\sum _{n=0}^\infty \bigg ( \int _{{\mathcal {Z}}} {\mathcal {A}}f(n,z) \nu (\mathrm{d}z) + \sum _{i=1}^m \int _{F_i} \gamma _i(z) \cdot \nabla f(z) \nu _{F_i} (\mathrm{d}z)\bigg ). \end{aligned}$$

The sum of the last two terms is equal to zero, because the basic adjoint relationship holds for the reflected jump diffusion process \({\widetilde{Z}}\) (see, e.g., [49]), that is, for \(f\in C^2_b({\mathcal {Z}})\),

$$\begin{aligned} \int _{{\mathcal {Z}}} {\mathcal {A}}f(n,z) \nu (\mathrm{d}z) + \sum _{i=1}^m \int _{F_i} \gamma _i(z) \cdot \nabla f(z) \nu _{F_i} (\mathrm{d}z) =0. \end{aligned}$$

For each \(z\in {\mathcal {Z}}\), the birth–death process N(t) has the stationary distribution given in (2.2) and (2.5), which satisfy \(r_n(z) {\mathcal {M}}_zf(n,\cdot ) =0\) for each \(z \in {\mathcal {Z}}\) and \(n \in {{\mathbb {Z}}}\). Multiplying this by \(\beta _n^{-1}\) and integrating over \(z \in {\mathcal {Z}}\), we get:

$$\begin{aligned} \sum _{n=0}^\infty \int _{{\mathcal {Z}}}\beta _n^{-1} r_n(z) {\mathcal {M}}_zf(n,z) \nu (\mathrm{d}z) = 0. \end{aligned}$$

Thus we have verified that (6.2) holds. The rest of the proof follows the same argument as the proof of [31, Theorem 3.1]. \(\square \)

1.2 Appendix B: A comparison lemma

Lemma 6.1

(Lemma 5.1 in [31]) Fix constants \(\alpha > 1\), \(\beta , \gamma > 0\). Take two independent random variables \(\xi \sim Exp(\beta )\) and \(\eta > 0\) with \({\mathbb {P}}(\eta > u) \le \alpha e^{-\gamma u}\) for \(u \ge 0\). Then

$$\begin{aligned} {\mathbb {P}}(\eta < \xi ) \ge \alpha ^{-\beta /\gamma }\frac{\gamma }{\beta + \gamma }. \end{aligned}$$
(6.3)

For \(a \in [0, \beta + \gamma )\), the moment-generating function for \(\xi \wedge \eta \) satisfies

$$\begin{aligned} {\mathbb {E}}\big [e^{a(\xi \wedge \eta )}\big ] \le \theta (\alpha , \beta , \gamma , a), \end{aligned}$$
(6.4)

where the function \(\theta \) is defined in (4.5).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, G., Sarantsev, A. & Suhov, Y. Birth and death processes in interactive random environments. Queueing Syst 102, 269–307 (2022). https://doi.org/10.1007/s11134-022-09855-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-022-09855-7

Keywords

Mathematics Subject Classification

Navigation