Skip to main content
Log in

Density functional approach to quantum lattice systems

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

For quantum lattice systems, we consider the problem of characterizing the set of single-particle densities,ρ, which come from the ground-state eigenspace of someN-particle Hamiltonian of the form\(H_0 + \sum\nolimits_{i = 1}^N {v(x_i )} \) whereH 0 is a fixed, bounded operator representing the kinetic and interaction energies. We show that the conditions onρ are that it be strictly positive, properly normalized, and consistent with the Pauli principle. Our results are valid for both finite and infinite lattices and for either bosons or fermions. The Coulomb interaction may be included inH 0 if the lattice dimension is ⩾2. We also characterize those single-particle densities which come from the Gibbs states of such Hamiltonians at finite temperature. In addition to the conditions stated above,ρ must satisfy a finite entropy condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Hohenberg and W. Kohn,Phys. Rev. 136B:864 (1964).

    Google Scholar 

  2. W. Kohn and L. J. Sham,Phys. Rev. 140A:1133 (1965).

    Google Scholar 

  3. W. Kohn, Density Functional Theory: Basic Results and Some Observations, Lecture presented at the NATO Summer School on Density Functional Methods in Physics, Alcabideche, Portugal, 1983; ITP preprint (1984).

  4. S. Lundquist and N. H. March, eds.,Theory of the Inhomogeneous Electron Gas (Plenum Press, New York, 1983).

    Google Scholar 

  5. R. Evans.Adv. Phys. 28:143 (1979).

    Google Scholar 

  6. J. T. Chayes, L. Chayes, and E. H. Lieb,Commun. Math. Phys. 93:57 (1984).

    Google Scholar 

  7. J. T. Chayes and L. Chayes,J. Stat. Phys. 36:471 (1984).

    Google Scholar 

  8. S. T. Epstein and C. M. Rosenthal,J. Chem. Phys. 64:247 (1978).

    Google Scholar 

  9. W. Kohn,Phys. Rev. Lett. 51:1596 (1983).

    Google Scholar 

  10. H. Englisch and R. Englisch,J. Phys. A: Math. Gen. 16:L693 (1983).

    Google Scholar 

  11. E. H. Lieb, inPhysics as Natural Philosophy: Essays in Honor of Laszlo Tisza on His 75th Birthday, H. Feshbach and A. Shimony, eds. (MIT Press, Cambridge, 1982). See alsoInt. J. Quant. Chem. 24:243 (1983); Density Functionals for Coulomb Systems, Proceedings of the NATO Summer School on Density Functional Methods in Physics, Alcabideche, Portugal, 1983, R. Dreizler, ed.

    Google Scholar 

  12. M. Reed and B. Simon,Analysis of Operators, Methods of Modern Mathematical Physics, Vol. IV (Academic, New York, 1978).

    Google Scholar 

  13. M. Hoffman-Ostenhof, T. Hoffman-Ostenhof, and B. Simon,J. Phys. A: Math. Gen. 13:1131 (1980).

    Google Scholar 

  14. M. Levy,Phys. Rev. A 26:1200 (1982).

    Google Scholar 

  15. M. Levy,Proc. Natl. Acad. Sci (USA) 76:6062 (1979).

    Google Scholar 

  16. H. Englisch and R. Englisch,Physica 112A:253 (1983).

    Google Scholar 

  17. H. W. Kuhn,Proc. Symp. Appl. Math. (AMS) 10:141 (1960).

    Google Scholar 

  18. A. J. Coleman,Rev. Mod. Phys. 35:668 (1963).

    Google Scholar 

  19. M. Reed and B. Simon,Functional Analysis, Methods of Modern Mathematical Physics, Vol. I (Academic, New York, 1972).

    Google Scholar 

  20. M. B. Ruskai,Commun. Math. Phys. 26:280 (1972).

    Google Scholar 

  21. D. Jerison,Ann. Math., to appear.

  22. A. Wehrl,Rev. Mod. Phys. 50:221 (1982).

    Google Scholar 

  23. E. H. Lieb,Bull. Am. Math. Soc. 81:1 (1975).

    Google Scholar 

  24. J. Katriel, C. J. Appellof, and E. R. Davidson,Int. J. Quant. Chem. 19:293 (1981).

    Google Scholar 

  25. H. Englisch and R. Englisch,Phys. Status Solidi, to appear.

  26. M. Combescure and J. Ginibre,Ann. Inst. H. Poincaré A XXIV:17 (1976).

    Google Scholar 

  27. M. Aizenmann and B. Simon,Commun. Pure Appl. Math. XXXV:209 (1982). See Appendix A, Example 3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by the National Science Foundation under grant No. PHY-82-03669.

Research supported by Office of Naval Research under grant No. 0014-80-G-0084.

On leave from Department of Mathematics, University of Lowell, Massachusetts 01854.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chayes, J.T., Chayes, L. & Ruskai, M.B. Density functional approach to quantum lattice systems. J Stat Phys 38, 497–518 (1985). https://doi.org/10.1007/BF01010474

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01010474

Key words

Navigation