Skip to main content
Log in

Geometrical derivation of the intrinsic Fokker-Planck equation and its stationary distribution

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Starting from an intrinsic Langevin equation, we give a geometrical derivation of the Fokker-Planck equation. We also present a method for obtaining a stationary distribution and for deriving potential conditions when the diffusion matrix is singular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Kolmogoroff,Math. Ann. 113:766 (1937).

    Google Scholar 

  2. A. M. Yoglom,Mat. Sb. 24:457 (1949).

    Google Scholar 

  3. R. L. Stratonovich,J. SIAM Control 4:362 (1966).

    Google Scholar 

  4. R. Graham,Z. Phys. B 26:397 (1977).

    Google Scholar 

  5. L. Garrido,Physica 100A:140 (1980).

    Google Scholar 

  6. H. Grabert, R. Graham, and M. S. Green,Phys. Rev. A 21:2136 (1980).

    Google Scholar 

  7. L. Garrido and J. Masoliver,J. Math. Phys. 23:1155 (1982).

    Google Scholar 

  8. J. Masoliver, L. Garrido, and J. Llosa,Phys. Lett. 102A:93 (1984).

    Google Scholar 

  9. J. Masoliver and L. Garrido,Phys. Lett. 103A:366 (1984).

    Google Scholar 

  10. K. D. Elworthy,Stochastic Differential Equations on Manifolds (Cambridge University Press, 1982).

  11. U. R. Steiger,Physica 125A:1 (1984).

    Google Scholar 

  12. M. van den Berg and J. T. Lewis,Bull. Lond. Math. Soc. 17:144 (1985).

    Google Scholar 

  13. L. Garrido and J. Llosa, inSystems Far from Equilibrium, L. Garrido, ed. (Springer-Verlag, 1980).

  14. C. W. Gardiner,Handbook of Stochastic Methods (Springer-Verlag, 1983).

  15. V. I. Klyatskin and V. E. Tatarski,Sov. Phys. Usp. 16:494 (1973).

    Google Scholar 

  16. P. Hänggi,Z. Phys. B 31:407 (1978).

    Google Scholar 

  17. N. G. Van Kampen,Phys. Rep. 24:171 (1976).

    Google Scholar 

  18. H. J. Sussmann,Ann. Prob. 6, 19–41 (1978).

    Google Scholar 

  19. Y. Choquet-Bruhat, C. DeWitt-Morette, and M. Dillard-Bleick,Analysis, Manifolds and Physics (North-Holland, 1977).

  20. H. Flanders,Differential Forms (Academic Press, 1963).

  21. C. Godbillon,Géométrie Différentielle et Mécanique Analitique (Hermann, Paris, 1969).

    Google Scholar 

  22. R. L. Stratonovich,Topics in the Theory of Random Noise, Vol. I (Gordon and Breach, 1963).

  23. E. Goursat,A Course in Mathematical Analysis, Vol. II, Part II (Dover, 1959).

  24. S. L. McCall,Phys. Rev. A 9:1515 (1974).

    Google Scholar 

  25. H. Haken,Laser Theory (Springer-Verlag, 1984).

  26. A. Schenzle and H. Brand,Phys. Rev. A 20:1628 (1979).

    Google Scholar 

  27. R. Graham and A. Schenzle,Phys. Rev. A 23:1302 (1981).

    Google Scholar 

  28. E. A. Novikov,Sov. Phys. JETP 20:1290 (1965).

    Google Scholar 

  29. R. L. Stratonovich,Conditional Markov Processes and Their Application to the Theory of the Optimal Control (Elsevier, 1968).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masoliver, J., Garrido, L. & Llosa, J. Geometrical derivation of the intrinsic Fokker-Planck equation and its stationary distribution. J Stat Phys 46, 233–248 (1987). https://doi.org/10.1007/BF01010343

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01010343

Key words

Navigation