Skip to main content
Log in

Low-temperature and long-time anomalies of a damped quantum particle

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The time evolution of a damped quantum particle is discussed. Dissipation is modeled by the bilinear coupling to a set of harmonic oscillators. Using a functional integral technique that accounts for initial correlations between the particle and the reservoir, one can express the dynamics of the damped particle entirely in terms of equilibrium correlation functions. The long-time behavior of these correlations is determined for memory damping arising from the coupling to a reservoir with spectral densityI(ω) ∞ω α at low frequencies, where α > 0. The time evolution of nonequilibrium initial states of the damped particle is discussed. At finite temperatures an initially localized state is found to spread subdiffusively or superdiffusively, depending on α. For α > 2 the damping becomes ineffective for long times, and the width of a state grows kinematically. At zero temperature and for α < 1, an initially localized state remains localized for all times. For α ≥ 1 the state spreads, but with a slower rate than at finite temperatures. Study of arbitrary initial states indicates that the process is ergodic at finite temperatures only for α ≤ 2 and at zero temperature for 1 ≤ α ≤ 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Haken, Light and Matter Ic, inHandbuch der Physik, Vol. XXV/2c (Springer, Heidelberg, 1969).

    Google Scholar 

  2. A. Abragam,The Principles of Nuclear Magnetism (Oxford University, London, 1961); P. Slichter,Principles of Magnetic Resonance (Springer, Berlin, 1978).

    Google Scholar 

  3. A. O. Caldeira and A. J. Leggett,Ann. Phys. (N.Y.) 149:374 (1983);153:445(E) (1984).

    Google Scholar 

  4. H. Grabert, U. Weiss, and P. Hanggi,Phys. Rev. Lett. 52:2193 (1984); H. Grabert and U. Weiss,Phys. Rev. Lett. 53:1787 (1984).

    Google Scholar 

  5. S. Washburn, R. A. Webb, R. F. Voss, and S. M. Faris,Phys. Rev. Lett. 54:2712 (1985); D. B. Schwartz, B. Sen, C. N. Archie, and J. E. Lukens,Phys. Rev. Lett. 55:1547 (1985); H. Grabert, P. Olschowski, and U. Weiss,Phys. Rev. Lett. 57:265 (1986).

    Google Scholar 

  6. S. Chakravarty and A. J. Leggett,Phys. Rev. Lett. 52:5 (1984); H. Grabert and U. Weiss,Phys. Rev. Lett. 54:1605 (1985); M. P. A. Fisher and A. T. Dorsey,Phys. Rev. Lett. 54:1609 (1985); U. Weiss and H. Grabert,Europhys. Lett. 2:667 (1986).

    Google Scholar 

  7. A. Schmid,Phys. Rev. Lett. 51:1506 (1983); F.Guinea, V. Hakim, and A. Muramatsu,Phys. Rev. Lett. 54:263 (1985).

    Google Scholar 

  8. B. G. Orr, H. M. Jaeger, A. M. Goldman, and C. G. Kuper,Phys. Rev. Lett. 56:378 (1986); S. Chakravarty, G.-L. Ingold, S. Kivelson, and A. Luther,Phys. Rev. Lett. 56:2303 (1986); M. P. A. Fisher, preprint.

    Google Scholar 

  9. H. Grabert, U. Weiss, and P. Talkner,Z. Phys. B 55:87 (1984); F. Haake and R. Reibold,Phys. Rev. A 32:2462 (1985); R. Jung, G.-L. Ingold, and H. Grabert,Phys. Rev. A 32:2510 (1985); C. Aslangul, N. Pottier, and D. Saint-James,J. Stat. Phys. 40:167 (1985).

    Google Scholar 

  10. R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965); R. P. Feynman,Statistical Mechanics (Benjamin, Reading, Massachusetts, 1972).

    Google Scholar 

  11. R. P. Feynman and F. L. Vernon,Ann. Phys. (N.Y.) 24:118 (1963).

    Google Scholar 

  12. A. Schmid,J. Low Temp. Phys. 49:609 (1982); U. Eckern, G. Schön, and V. Ambegaokar,Phys. Rev. B 30:6419 (1984); A. O. Caldeira and A. J. Leggett,Physica 121A:587 (1983);130A:374(E) (1985).

    Google Scholar 

  13. V. Hakim and V. Ambegaokar,Phys. Rev. A 32:423 (1985).

    Google Scholar 

  14. P. Schramm and H. Grabert,Phys. Rev. A 34:4515 (1986); H. Grabert, P. Schramm, and G.-L. Ingold, to be published.

    Google Scholar 

  15. H. Grabert, P. Schramm, and G.-L. Ingold,Phys. Rev. Lett. 58:1285 (1987).

    Google Scholar 

  16. C. P. Flynn and A. M. Stoneham,Phys. Rev. B 1:3966 (1970); H. Grabert, inQuantum Aspects of Molecular Motion in Solids (Springer, Berlin, 1987).

    Google Scholar 

  17. D. Chandler,J. Stat. Phys. 42:49 (1986); P. Hanggi,J. Stat. Phys. 42:105 (1986).

    Google Scholar 

  18. H. Dekker,Phys. Rep. 80:1 (1981).

    Google Scholar 

  19. P. Schramm and G.-L. Ingold, to be published.

  20. A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg and W. Zwerger,Rev. Mod. Phys. 59:1 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schramm, P., Grabert, H. Low-temperature and long-time anomalies of a damped quantum particle. J Stat Phys 49, 767–810 (1987). https://doi.org/10.1007/BF01009356

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01009356

Key words

Navigation