Skip to main content
Log in

The intracellular localization of amiloride in frog skin

  • Papers
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Summary

The diuretic compound amiloride is often used as a specific inhibitor of the passive Na+ entry step in the transepithelial transport of Na+ across frog skin. We have utilized the fluorescence properties of amiloride to study the distribution of this transport inhibitor in the ventral skin ofRana pipiens. After a 30 s exposure of 1–100 μm amiloride to the external surface of frog skin, amiloride fluorescence was evident in the cytoplasm of all cell layers of the epidermis and alveolar gland epithelium. Changes in the conditions of incubation which alter the pharmacological activity of amiloride did not affect the intracellular distribution of amiloride or the washout profile of [14C]amiloride. The presence of amiloride fluorescence in the cytoplasm prevented our examination of changes in the amiloride fluorescence at the cell surface with various conditions of incubation. Four derivatives of amiloride that differed in their ability to inhibit short-circuit current were also localized intracellularly but varied in their relative distribution among the cell layers of the epidermis. Our results indicate that when incubated at concentrations from 1 to 100 μm, a large fraction of the amiloride taken up by frog skin is not directly involved with the inhibition of passive Na+ transport at the apical surface of the stratum granulosum. The mechanism of intracellular uptake of amiloride is not clear. However, the cytoplasmic localization of amiloride could explain the action of the drug on intracellular enzymes and may account for the large proportion of non-displaceable [14C]amiloride that has been observed in frog skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beckmann B., Guertler, B., Leaf, R., Witkum, P. &Sharp, G. W. G. (1974) Evidence for an apical membrane effect in the regulation of the hexose monophosphate shunt pathway in toad bladder. Studies with amiloride.Biochem. Biophys. Acta 332, 350–7.

    Google Scholar 

  • Benos, D. J. &Mandel, L. J. (1978) Irreversible inhibition of sodium entry sites in frog skin by a photosensitive amiloride analog.Science 199, 1205–6.

    Google Scholar 

  • Benos, D. J., Simon, S. A., Mandel, L. J. &Cala, P. M. (1976) Effect of amiloride and some of its analogues on cation transport in isolated frog skin and thin lipid membranes.J. gen. Physiol. 68, 43–63.

    Google Scholar 

  • Bentley, P. J. (1968). Amiloride: A potent inhibitor of sodium transport across the toad bladder.J. Physiol., Lond. 195, 317–30.

    Google Scholar 

  • Bentley, P. J. (1979) The comparative pharmacology of amiloride. InAmiloride and Epithelial Sodium Transport (edited byCuthbert, A. W., Fanelli, G. M. andScriabine, A.), pp. 35–40. Baltimore: Urban and Schwarzenberg.

    Google Scholar 

  • Berlin, R. D. &Oliver, J. M. (1978) Analogous ultrastructure and surface properties during capping and phagocytosis in leukocytes.J. Cell Biol. 77, 789–804.

    Google Scholar 

  • Biber, T. (1971) Effect of changes in transepithelial transport on the uptake of sodium across the outer surface of frog skin.J. gen. Physiol. 58, 131–44.

    Google Scholar 

  • Biber, T. U. L. (1979). Effects of amiloride on sodium fluxes in frog skin. InAmiloride and Epithelial Sodium Transport (edited byCuthbert, A. W., Fanelli, G. M. andScriabine, A), pp. 61–77. Baltimore: Urban and Schwarzenberg.

    Google Scholar 

  • Cereijido, M. &Rotunno C. A. (1968) Fluxes and distribution of sodium in frog skin. A new model.J. gen. Physiol. 51, 280–9.

    Google Scholar 

  • Cragoe, E. J. (1979) Structure-activity relationships in the amiloride series. InAmiloride and Epithelial Sodium Transport (edited byCuthbert, A. W., Fanelli, G. M. andScriabine, A.), pp. 1–20. Baltimore: Urban and Schwarzenberg.

    Google Scholar 

  • Cragoe, E. J., Woltersdorf, O. W., Bicking, J. B., Kwong, S. F. &Jones, J. H. (1967) Pyrazine diuretics. II.N-Amidino-3-amino-5 substituted 6-halopyrazine carboxamides.J. Med. Chem. 10, 66–75.

    Google Scholar 

  • Cuthbert, A. W. (1973a) An upper limit to the number of sodium channels in frog skin epithelium.J. Physiol., Lond. 228, 681–92.

    Google Scholar 

  • Cuthbert, A. W. (1973b) Evidence for multiple forms of receptors for amiloride in transporting epithelia.Eur. J. Pharmacol. 23, 187–90.

    Google Scholar 

  • Cuthbert, A. W. &Fanelli, G. M. (1978) Effects of some pyrazine carboxamides on sodium transport in frog skin.Br. J. Pharmacol. 63, 139–49.

    Google Scholar 

  • Cuthbert, A. W. &Shum, W. K. (1974) Binding of amiloride to sodium channels in frog skin.Molec. Pharmacol. 10, 880–91.

    Google Scholar 

  • Cuthbert, A. W. &Wong, P. Y. D. (1972) The role of calcium ions in the interaction of amiloride with membrane receptors.Molec. Pharmacol. 8, 222–9.

    Google Scholar 

  • Dorge, A. &Nagel, W. (1970) Effects of amiloride on sodium transport in frog skin. II. Sodium transport pool and unidirectional fluxes.Pflugers Arch. 321, 91–101.

    Google Scholar 

  • Farquhar, M. G. &Palade, G. E. (1965) Cell junctions in amphibian skin.J. Cell Biol. 26, 263–91.

    Google Scholar 

  • Koefoed-Johnsen, V. &Ussing, H. H. (1958) The nature of frog skin potential.Acta physiol. scand. 42, 298–308.

    Google Scholar 

  • Lindemann, B. &Voute, C. (1976) Structure and function of the epidermis. InFrog Neurobiology (edited byLlinas, R. andPrecht, W.), pp. 169–210, Berlin, Heidelberg, New York: Springer-Verlag.

    Google Scholar 

  • Losert, W., Sitt, R., Senft, G., Bergman, K. V. &Zesch, A. (1969) Biochemical studies on mechanisms of action of compounds influencing tubular Na+ transport: aldosterone, amiloride and triamterene. InProgress of Nephrology (edited byPeters G. andRochramel, F.), pp. 267–274. Berlin, Heidelberg, New York: Springer-Verlag.

    Google Scholar 

  • Mills, J. W., Ernst, S. A. &Dibona, D. R. (1977) Localization of Na+-pump sites in frog skin.J. Cell Biol. 73, 88–110.

    Google Scholar 

  • Nielsen, R. &Tomilson, R. W. S. (1970) The effect of amiloride on sodium transport in the normal and moulting frog skin.Acta physiol. scand. 79, 238–43.

    Google Scholar 

  • Rabito, C. A., Rotunno, C. A. &Cereijido, M. (1978) Amiloride and calcium effect on the outer barrier of the frog skin.J. membr. Biol. 42, 169–87.

    Google Scholar 

  • Rick, R., Dorge, A. V., Arnim, E. &Thurau, K. (1978) Electron microprobe analysis of frog skin epithelium: Evidence for a syncytial sodium transport compartment.J. membr. Biol. 39, 313–31.

    Google Scholar 

  • Taub, M. (1978) Isolation of amiloride resistant clones from dog kidney epithelial cells.Somatic Cell Genet. 4, 609–16.

    Google Scholar 

  • Ussing, H. H. &Windhager, E. E. (1964) Nature of shunt path and active sodium transport path through frog skin epithelium.Acta physiol. scand. 61, 484–504.

    Google Scholar 

  • Voute, C. L. (1973) Morphophysiological evidence for a two step active transport path for sodium in the epithelium of the frog skin (R. temporaria).Experientia 29, 749 (Abstract).

    Google Scholar 

  • Voute, C. L. &Ussing, H. H. (1968) Some morphological aspects of active sodium transport. The epithelium of the frog skin.J. Cell Biol. 36, 625–38.

    Google Scholar 

  • Zeiske, W. &Lindemann, B. (1974) Chemical stimulation of Na+ current through the outer surface of frog skin epithelium.Biochem. Biophys. Acta 352, 323–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Briggman, J.V., Graves, J.S., Spicer, S.S. et al. The intracellular localization of amiloride in frog skin. Histochem J 15, 239–255 (1983). https://doi.org/10.1007/BF01006239

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01006239

Keywords

Navigation