Skip to main content
Log in

Concurrent measurement of (Na+,K+)-ATPase activity and lipid peroxides in rat brain following reversible global ischemia

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Lipid peroxides, quantitated as lipid conjugated dienes, and (Na+,K+)-ATPase activity were assayed concurrently in brains of control rats and in three groups subjected to 30 min of reversible forebrain ischemia followed by 0, 1, and 4 hr of recirculation. Multiple small samples were taken from lateral, dorsolateral and medial cortex, hippocampus, thalamus and striatum following in situ freezing. (Na+,K+)-ATPase activity was elevated in hippocampus, dorsolateral and lateral cortex (P<0.10) and in thalamus (P<0.05) following 30 min ischemia. ATPase activity in medial cortex continued to increase during the first 1 hr of recirculation (P<0.10). Following 4 hr of recirculation, decreased enzyme activities were observed in all of these regions (lateral cortex and hippocampus,P<0.10). No changes in ATPase activity were observed in samples from striatum. Of the regional samples assayed for lipid peroxide content, the incidence of conjugated dienes as a function of recirculation time was 6% (0 hr), 23% (1 hr), and 17% (4 hr). For these samples, plots of normalized ATPase activity vs. tissue conjugated diene concentration revealed that normalized ATPase activity varied with recirculation time, but was independent of the magnitude of the lipid peroxidative process (expressed in terms of tissue conjugated diene concentration). These results suggest that disturbances in membrane structure and function presumed to arise from lipid peroxidation are not responsible for the behavior of the ATPase under the current in vivo conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aveldano, M. I., andBazan, N. G. 1975. Rapid production of diacylclycerols enriched in arachidonate and stearate during early brain ischemia. J. Neurochem. 25:919–920.

    PubMed  Google Scholar 

  2. Bazan, N. G., DeBazan, H. E. P., Kennedy, W. G., andJoel, C. D. 1971. Regional distribution and rate of production of free fatty acids in rat brain. J. Neurochem. 18:1387–1393.

    PubMed  Google Scholar 

  3. Bligh, E. G., andDyer, W. J. 1959. A rapid method of lipid extraction and purification. Can. J. Biophys. Biochem. 32:911–917.

    Google Scholar 

  4. Bloj, B., Morero, R. D., Farias, R. N., andTrucco, R. E. 1973. Membrane lipid fatty acids and regulation of membrane-bound enzymes. Allosteric behavior of erythrocyte Mg(2+)-ATPase, (Na++K+)-ATPase and acetylcholinesterase from rats fed different supplemented diets. Biochim. Biophys. Acta 311:67–79.

    PubMed  Google Scholar 

  5. Cenedella, R. J., Galli, C., andPaoletti, R. 1975. Brain free fatty acid levels in rats sacrificed by decapitation versus focused microwave irradiation. Lipids 10:290–293.

    PubMed  Google Scholar 

  6. Chan, H. W.-S., andLevett, G. 1977. Autoxidation of methyl linoleate. Separation and analysis of isomeric mixtures of methyl linoleate hydroperoxides and methyl hydroxylinoleates. Lipids 12:99–104.

    PubMed  Google Scholar 

  7. Cooper, A. J. L., Pulsinelli, W. A., andDuffy, T. E. 1980. Glutathione and ascorbate during ischemia and postischemic reperfusion in rat brain. J. Neurochem. 35:1242–1245.

    PubMed  Google Scholar 

  8. Dahle, L. K., Hill, E. G., andHolman, R. T. 1962. The thiobarbituric acid reaction and the autoxidations of polyunsaturated fatty acid methyl esters. Arch. Biochem. Biophys. 98:253–261.

    PubMed  Google Scholar 

  9. Edgar, A. D., Strosznajder, J., andHorrocks, L. A. 1982. Activation of ethanolamine phospholipase A2 in brain during ischemia. J. Neurochem. 39:1111–1116.

    PubMed  Google Scholar 

  10. Gilbert, J. C., andSawas, A. H. 1983. ATPase activities and lipid peroxidation in rat cerebral cortex synaptosomes. Arch. Int. Pharmacodyn. 263:189–196.

    PubMed  Google Scholar 

  11. Ginsberg, M. D., Watson, B. D., Yoshida, S., Busto, R., Goldberg, W. J., andScheinberg, P. 1983. Aspects of tissue injury in cerebral ischemia. Pages 237–247,in Reivich, M., andHurtig, H. (eds.), Cerebrovascular Diseases-Thirteenth Princeton Conference. Raven Press, New York.

    Google Scholar 

  12. Goracci, G., Horrocks, L. A., andPorcellati, G. 1977. Reversibility of ethanolamine and choline phosphotransferases (E.C. 2.7.8.1 and E.C. 2.7.8.2) in rat brain microsomes with labeled alkylacylglycerols. FEBS Lett. 80:41–44.

    PubMed  Google Scholar 

  13. Goracci, G., Francescangeli, E., Horrocks, L. A., andPorcellati, G. 1981. The reverse reaction of choline phosphotransferase in rat brain microsomes: A new pathway for degradation of phosphatidylcholine. Biochim. Biophys. Acta 664:373–379.

    PubMed  Google Scholar 

  14. Grisham, C. M., andBarnett, R. E. 1973. The role of lipid-phase transitions in the regulation of the (sodium + potassium) adenosine triphosphatase. Biochemistry 12:2635–2637.

    PubMed  Google Scholar 

  15. Hexum, T. D., andFried, R. 1979. Effects of superoxide radicals on transport of (Na+K) adenosine triphosphatase and protection by superoxide dismutase. Neurochem. Res. 4:73–82.

    PubMed  Google Scholar 

  16. Jenkins, F. A., andWhite, H. E. 1957. Page 457,in Fundamentals of Optics, McGraw-Hill, New York.

    Google Scholar 

  17. Kimelberg, H. K., andPapahadjopoulos, D. 1974. Effects of phospholipid acyl chain fluidity, phase transitions, and cholesterol on (Na++K+)-stimulated adenosine triphosphatase. J. Biol. Chem. 249:1071–1080.

    PubMed  Google Scholar 

  18. Kogure, K., Watson, B. D., Busto, R., andAbe, K. 1982. Potentiation of lipid peroxides by ischemia in rat brain. Neurochem. Res. 7:437–454.

    PubMed  Google Scholar 

  19. Kovachich, G. B., andMishra, O. P. 1981. Partial inactivation of Na,K-ATPase in cortical brain slices incubated in normal Krebs-Ringer phosphate medium at 1 and at 10 atm oxygen pressures. J. Neurochem. 36:333–335.

    PubMed  Google Scholar 

  20. Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  21. MacMillan, V. 1982. Cerebral Na+,K+-ATPase activity during exposure to and recovery from acute ischemia. J. Cerebr. Blood Flow Metab. 2:457–465.

    Google Scholar 

  22. Margenau, H. andMurphy, G. M. 1961. Page 515,in The Mathematics of Physics and Chemistry, D. Van Nostrand, Princeton.

    Google Scholar 

  23. Mrsulja, B. B., Mrsulja, B. J., Cvejic, V., Djuricic, B. M., andRogac, L. 1978. Alterations of putative neurotransmitters and enzymes during ischemia in gerbil cerebral cortex. J. Neural Trans. Suppl. 14:23–30.

    Google Scholar 

  24. Muszbek, L., Szabo, T., andFesus, L. 1977. A highly sensitive method for the measurement of ATPase activity. Anal. Biochem. 77:286–288.

    PubMed  Google Scholar 

  25. Ponten, U., Ratcheson, R. A., andSalford, L. G. 1973. Optimal freezing conditions for cerebral metabolites in rats. J. Neurochem. 21:1127–1138.

    PubMed  Google Scholar 

  26. Pulsinelli, W. A., andBrierley, J. B. 1979. A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 10:267–272.

    PubMed  Google Scholar 

  27. Pulsinelli, W. A., Brierley, J. B., andPlum, F. 1981 Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann. Neurol. 11:491–498.

    Google Scholar 

  28. Pulsinelli, W. A., Levy, D. E., andDuffy, T. E. 1981. Regional cerebral blood flow and glucose metabolism following transient forebrain ischemia. Ann. Neurol. 11:499–509.

    Google Scholar 

  29. Rehncrona, S., Folbergrova, J., Smith, D., andSiesjo, B. K. 1980. Influence of complete and pronounced incomplete cerebral ischemia and subsequent recirculation on cortical concentrations of oxidized and reduced glutathione in the rat. J. Neurochem. 34:84–93.

    Google Scholar 

  30. Schwartz, R. B., Spatacco, A., andWelsh, F. A. 1980. Alterations of sodium-potassium ATPase during cerebral ischemia and recirculation. Soc. Neurosci. Abst. 6:130.

    Google Scholar 

  31. Schwartz, J. P., Mrsulja, B. B., Mrsulja, B. J., Passonneau, J. V., andKlatzo, I. 1976. Alterations of cyclic nucleotide-related enzymes and ATPase during unilateral ischemia and recirculation in the gerbil cerebral cortex. J. Neurochem. 27:101–107.

    Google Scholar 

  32. Shaller, C. A., Jacques, S., andShelden, C. H. 1980. The pathophysiology of stroke: A review with molecular considerations. Surg. Neurol. 14:433–443.

    PubMed  Google Scholar 

  33. Siesjo, B. K. 1981. Cell damage in the brain: A speculative synthesis. J. Cerebr. Blood Flow Metabol. 1:155–185.

    Google Scholar 

  34. Sun, A. Y. 1972. The effect of lipoxidation on synaptosomal (Na+−K+)-ATPase isolated from the cerebral cortex of squirrel monkey. Biochim. Biophys. Acta 266:350–360.

    PubMed  Google Scholar 

  35. Watson, B. D., Busto, R., Goldberg, W. J., Santiso, M., Yoshida, S., andGinsberg, M. D. 1984. Lipid peroxidation in vivo induced by reversible global ischemia in rat brain. J. Neurochem. 42:268–274.

    PubMed  Google Scholar 

  36. Yoshida, S., Abe, K., Busto, R., Watson, B. D., Kogure, K., andGinsberg, M. D. 1982. Influence of transient ischemia on lipid-soluble antioxidants, free fatty acids and energy metabolites in rat brain. Brain Res. 245:307–316.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldberg, W.J., Watson, B.D., Busto, R. et al. Concurrent measurement of (Na+,K+)-ATPase activity and lipid peroxides in rat brain following reversible global ischemia. Neurochem Res 9, 1737–1747 (1984). https://doi.org/10.1007/BF00968084

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00968084

Keywords

Navigation