Skip to main content
Log in

Distribution of the beta-2 adrenergic receptor messenger RNA in the rat brain by in situ hybridization histochemistry: Effects of chronic reserpine treatment

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We studied the distribution of the rat brain beta-2 adrenergic receptor (AR) mRNA, and the effects of monoamine depletions by chronic reserpine treatment using in situ hybridization histochemistry. In the control group, high level signals of beta-2 AR mRNA were observed in the parietal, frontal and piriform cortices, the medial septal nuclei, the olfactory tubercle, and the midbrain. Moderate signals were found in the striatum, the retrosplenial cortex, the hippocampus, and the thalamic nuclei. After chronic reserpine treatment, beta-2 AR mRNA levels were increased in many brain regions. The large increases were seen in the hippocampus, all thalamic nuclei, the amygdaloid nuclei, and the midbrain, followed by the striatum and the occipital cortex. The receptor up-regulation resulting from chronic monoamine depletion may be due to these increases in beta-2 AR mRNA, indicating that this up-regulation may be caused by increased receptor production rather than decreased receptor degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Forno, L. S. 1978. The locus ceruleus in Alzheimer's disease. J. Neuropathol. Exp. Neurol. 37:614.

    Google Scholar 

  2. Arai, H., Kosaka, K., and Iizuka, R. 1984. Changes of biogenic amines and their metabolites in post-mortem brains from patients with Alzheimer-type dementia. J. Neurochem. 43:388–393.

    PubMed  Google Scholar 

  3. Kalaria, R. N., Andorn, A. C., Tabaton, M., Whitehouse, P. J., Harik, S. I., and Unnerstall, J. R. 1989. Adrenergic receptors in aging and Alzheimer's disease: Increased beta-2 receptors in prefrontal cortex and hippocampus. J. Neurochem. 53:1772–1781.

    PubMed  Google Scholar 

  4. Chung, F. Z., Lentes, K. U., Gocayne, J., Fitzgerald, M., Robinson, D., Kerlavage, A. R., Fraser, C. M., and Venter, J. C. 1987. Cloning and sequence analysis of the human brain beta-adrenergic receptor: Evolutionary relationship to rodent and avian beta-receptors and porcine muscarinic receptors. FEBS Lett. 211:200–206.

    PubMed  Google Scholar 

  5. Chomczynski, P., and Sacchi, N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159.

    PubMed  Google Scholar 

  6. Young, W. S. III, Bonner, T. I., and Brann, M. R. 1986. Mesencephalic dopamine neurons regulate the expression of neuropeptide mRNAs in the rat forebrain. Proc. Natl. Acad. Sci. USA. 83:9828–9831.

    Google Scholar 

  7. McCabe, J. T., and Pfaff, D. W. 1989. In situ hybridization: A methodological guide. Pages 98–126,in Conn, P. M. (ed.), Methods in Neurosciences vol. 1: Gene Probes, Academic Press, Inc., San Diego.

    Google Scholar 

  8. Asanuma, M., Ogawa, N., Mizukawa, K., Haba, K., and Mori, A. 1990. Comparison of formaldehyde-preperfused frozen and freshly frozen tissue preparation for thein situ hybridization for alpha-tubulin messenger RNA in the rat brain. Res. Commun. Chem. Pathol. Pharmacol. 70:183–192.

    PubMed  Google Scholar 

  9. Paxinos, G. and Watson, C. 1986. The rat brain, in stereotaxic coordinates. second edition., Academic Press, Sydney

    Google Scholar 

  10. Duman, R. S., Saito, N., and Tallman, J. F. 1989. Development of beta-adrenergic receptor and G protein messenger RNA in rat brain. Mol. Brain Res. 5:289–296.

    PubMed  Google Scholar 

  11. Dixon, R. A. F., Kobilka, B. K., Strader, D. J., Benovic, J. L., Dohlman, H. G., Frielle, T., Bolanowski, M. A., Bennett, C. D., Rands, E., Diehl, R. E., Mumford, R. A., Slater, E. E., Sigal, I. S., Caron, M. G., Lefkowitz, R. J., and Strader, C. D. 1986. Cloning of the gene and cDNA for mammalian beta-adrenergic receptor and homology with rhodopsin. Nature 321:75–79.

    PubMed  Google Scholar 

  12. Kobilka, B. K., Dixon, R. A. F., Frielle, T., Dohlman, H. G., Bolanowski, M. A., Sigal, I. S., Yang-Feng, T. L., Francke, U., Caron, M. G., and Lefkowitz, R. J. 1987. cDNA for the human beta2-adrenergic receptor: A protein with multiple membrane-spanning domains and encoded by a gene whose chromosomal location is shared with that of the receptor for platelet-derived growth factor. Proc. Natl. Acad. Sci. USA. 84:46–50.

    PubMed  Google Scholar 

  13. Rainbow, T. C., Parsons, B., and Wolfe, B. B. 1984. Quantitative autoradiography of beta 1- and beta 2-adrenergic receptors in rat brain. Proc. Natl. Acad. Sci. USA. 81:1585–1589.

    PubMed  Google Scholar 

  14. Sharma, V. K., Harik, S. I., Busto, R., and Banerjee, S. P. 1981. Effects of noradrenaline depletion on adrenergic and muscarinic cholinergic receptors in the cerebral cortex, hippocampus and cerebellum. Exp. Neurol. 72:179–194.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asanuma, M., Ogawa, N., Mizukawa, K. et al. Distribution of the beta-2 adrenergic receptor messenger RNA in the rat brain by in situ hybridization histochemistry: Effects of chronic reserpine treatment. Neurochem Res 16, 1253–1256 (1991). https://doi.org/10.1007/BF00966654

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00966654

Key Words

Navigation