Skip to main content
Log in

Glutamine and alpha-ketoglutarate uptake and metabolism by nerve terminal enriched material from mouse cerebellum

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In order to provide evidence relevant to the hypothesis that nonsynaptically derived α-ketoglutarate serves as a metabolic precursor of the neurotransmitter pools of glutamate and GABA the uptake and metabolism of α-ketoglutarate by nerve terminal enriched material was studied and compared to corresponding data for glutamine. Both α-ketoglutarate and glutamine were transported across the cell membrane by high affinity and low affinity carriers. Under conditions prevailing in vivo α-ketoglutarate probably is transported primarily by its high affinity carrier, whereas gluatmine should be transported primarily by one or more low affinity carriers. Based upon reciprocal uptake inhibition experiments glutamine appeared to be transported by the alanine preferring system, and to a lesser extent by the basic amino acid and large neutral amino acid carriers. A comparison of the rate of uptake by different cellular preparations enriched in either nerve terminals or cell bodies indicated that α-ketoglutarate is transported selectively by nerve terminals. Both substrates were rapidly converted to glutamate; however, glutamine was more readily metabolized to GABA. The results of our study are consistent with the concept that both glutamine and α-ketoglutarate derived from extra-neuronal sources are taken up by nerve terminals and utilized to replenish the neurotransmitter pools of glutamate and GABA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berl, S., andClarke, D. D. 1969. Metabolic compartmentation of glutamate in the CNS. Pages 168–197,in Lajtha, A., (ed.), Handbook of Neurochemistry, Vol. 1, Plenum Press, New York.

    Google Scholar 

  2. Van den Berg, C. J. 1970. Glutamate and glutamine. Pages 355–379,in Lajtha, A. (ed.), Handbook of Neurochemistry, Vol. 3, Plenum Press, New York.

    Google Scholar 

  3. Roberts, E. 1981. Strategies for identifying sources and sites of formation of GABA-precursor or transmitter glutamate in brain. Pages 91–102,in DiChiara, G. andGessa G. L. (eds.), Glutamate as a Neurotransmitter, Raven Press, New York.

    Google Scholar 

  4. Shank, R. P., andAprison, M. H. 1979. Biochemical aspects of the neurotransmitter function of glutamate. Pages 139–150,in Filer, L. J. Jr. et al. (eds.), Glutamic Acid: Advances in Biochemistry and Physiology, Raven Press, New York.

    Google Scholar 

  5. Shank, R. P. andAprison, M. A. 1977. Glutamine uptake and metabolism by the isolated toad brain: evidence pertaining to its proposed role as a transmitter precursor. J. Neurochem. 28:1189–1196.

    PubMed  Google Scholar 

  6. Bradford, H. F., Ward, H. K. andThomas A. J. 1978. Glutamine as a substrate for nerve endings. J. Neurochem. 30:1453–1459.

    PubMed  Google Scholar 

  7. Potashner S. J. 1978. The spontaneous and electrically evoked release from slices of guinea pig cerebral cortex of endogenous amino acids labelled via metabolism ofd-[U-14C]glucose. J. Neurochem. 31:177–186.

    PubMed  Google Scholar 

  8. Hamberger, A. C., Chiang, G. H., Nylen E. S., Scheff, S. W., andCotman C. W. 1979. Glutamate as a CNS transmitter I. Evaluation of glucose and glutamine as prescursors for the synthesis of preferentially released glutamate. Brain Res. 168:513–530.

    PubMed  Google Scholar 

  9. Gjessing, L. R., Gjesdahl, P., andSjaastad, O. 1972. The amino acids in human cerebrospinal fluid. J. Neurochem. 19:1807–1808.

    PubMed  Google Scholar 

  10. Shank, R. P., andAprison, M. H. 1981. Present status and significance of the glutamine cycle in neural tissues. Life Sciences 28:837–842.

    PubMed  Google Scholar 

  11. Maker, H. S., Clarke D. D., andLajtha, A. 1976. Intermediary metabolism of carbohydrates and amino acids. Pages 279–307.in Siegel G. J., Albers, R. W., Katzman, R., andAgranoff, G. W. (eds.), Basic Neurochemistry, Little, Brown and Co., Boston.

    Google Scholar 

  12. Hertz, L. 1979. Functional interactions between neurons and astrocytes I. Turnover and metabolism of putative amino acid transmitters. Prog. Neurobiol. 13:277–323.

    PubMed  Google Scholar 

  13. Shank, R. P., Campbell, G. LeM., Freytag, S. O., andUtter, M. F. 1981. Evidence that pyruvate carboxylase is an astrocyte specific enzyme. Soc. Neurosci. Absts. 7, 936.

    Google Scholar 

  14. Campbell, G. LeM., Schachner, M., andSharrow S. O. 1977. Isolation of glial cellenriched and depleted populations from mouse cerebellum. Brain Research. 127:69–86.

    PubMed  Google Scholar 

  15. Shank, R. P., andCampbell, G. LeM. J. Neuroscience (accepted).

  16. Altman, J. 1972. Postnatal development of the cerebellar cortex in rat. J. Comp. Neurol. 145:353–397.

    PubMed  Google Scholar 

  17. Shank, R. P., andCampbell, G. LeM. 1981. Avid Na+-dependent, high-affinity uptake of alpha-ketoglutarate by nerve terminal enriched material from mouse cerebellum. Life Sciences 28:843–850.

    PubMed  Google Scholar 

  18. Juggi, J. S., Iyng Karan, N., andPrathap, K. 1979. Hyperammonemia in Reye's Syndrome. Pages 411–432,in Crocker, J. F. S. (ed.), Reye's Syndrome II, Grune and Stratton, New York.

    Google Scholar 

  19. Cheng, S. C., Nakamura, R., andWaelsch, H. 1967. Relative contribution of carbon dioxide fixation and acetyl-CoA pathways in two nervous tissues. Nature 216:928–929.

    PubMed  Google Scholar 

  20. Wenthold, R. J., Harmison, G., Neises, G., Altschuler, R., andFex, J. 1981. Aspartate aminotransferase as a possible glutamate/aspartate marker. Am. Soc. Neurochem. Abstracts 12:256.

    Google Scholar 

  21. Chee, P. K., Dahl, J. L., andFahien, L. A. 1979. The purification and properties of rat brain glutamate dehydrogenase. J. Neurochem. 33:53–60.

    PubMed  Google Scholar 

  22. Meister, A. 1979. Biochemistry of glutamate: glutamine and glutathione. Pages 69–84,in Filer, L. J., Jr., et al. (eds.), Glutamic Acid: Advances in Biochemistry and Physiology, Raven Press, New York.

    Google Scholar 

  23. Kvamme, E. andOlsen, B. E. 1981. Evidence of compartmentation of synaptosomal phosphate-activated glutaminase. J. Neurochem. 36:1916–1923.

    PubMed  Google Scholar 

  24. Battistin, L., Piccoli, F., andLajtha, A. 1972. Heteroexchange of amino acids in incubated slices of brain. Archives Biochem. Biophys. 151:102–111.

    Google Scholar 

  25. Balcar, V. J., andJohnston, G. A. R. 1975. High affinity uptake ofl-glutamine in rat brain slices. J. Neurochem. 24:875–879.

    PubMed  Google Scholar 

  26. Roberts, P. J., andKeen, P. 1974. High affinity uptake for glutamine in rat dorsal roots but not in nerve endings. Brain Res. 67:352–357.

    Google Scholar 

  27. Baldessarini, R. J., andYorke, C. 1974. Uptake and release of possible false transmitter amino acids by rat brain Tissue. J. Neurochem. 23:839–848.

    PubMed  Google Scholar 

  28. Sershen, H., andLajtha, A. 1979. Inhibition pattern by analogs indicates the presence of ten or more transport systems for amino acids in brain cells. J. Neurochem. 32:719–726.

    PubMed  Google Scholar 

  29. Lajtha, A., andSershen, H. 1975. Inhibition of amino acid uptake by the absence of Na+ in slices of brain. J. Neurochem. 24:667–672.

    PubMed  Google Scholar 

  30. Morre, M. C., andWurtman, R. J. 1981. Characteristics of synaptosomal tyrosine uptake in various brain regions: effect on other amino acids. Life Sciences. 28:65–76.

    PubMed  Google Scholar 

  31. Seiler, N., andDeckardt, K. 1976. Association of putrescine, spermidine, spermine and GABA with structural elements of brain cells. Neurochem. Res. 1:469–499.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shank, R.P., Campbell, G.L. Glutamine and alpha-ketoglutarate uptake and metabolism by nerve terminal enriched material from mouse cerebellum. Neurochem Res 7, 601–616 (1982). https://doi.org/10.1007/BF00965126

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965126

Keywords

Navigation