Skip to main content
Log in

Oxidative metabolism and acetylcholine synthesis during acetylpyridine treatment

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In order to clarify the mechanisms by which nicotinic acid deficiency impairs brain function, the effects of the nicotinic acid antimetabolite, 3-acetylpyridine, have been investigated on behavior, cerebral oxidative metabolism, and acetylcholine synthesis. In young rats (21–23 days old), 3-acetylpyridine caused dose- and time-related deficits in behavior, as measured by a neurological scale and by “tight-rope” performance, loss of body weight, and decreased survival. An intermediate dosage decreased cerebral glucose utilization in the inferior olivary nuclei, but increased it in the fastigial, interpositus, red, dentate, vestibular, posterior mamillary, and habenular nuclei. Selective alteration of metabolism was also observed in brain slices from 3-acetylpyridine-treated rats. Although forebrain slices were unaffected, in brainstem slices the synthesis of acetylcholine decreased by 34% with depolarizing (31 mM) concentrations of K+ (P<0.05). This dose of 3-acetylpyridine did not deplete the total pool of NAD in any of the 7 brain regions examined. Thus, the nicotinic acid deficiency which results from 3-acetylpyridine treatment appears to be yet another metabolic encephalopathy in which cholinergic systems are impaired.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carpenter, K. J. 1981. Pellagra. Hutchinson Ross Publishing Company, Pennsylvania, 1981.

    Google Scholar 

  2. Gopalan, C., andRao, K. S. J. 1972. Pellagra and amino acid imbalance. Pages 505–524,in Munson, P. Glover, J. Diczfalusy, E., andOlson, R. (eds.), Vitamins and hormones, Vol. 33. Academic Press, New York.

    Google Scholar 

  3. Horwitt, M. K. Niacin. Pages 205–208.in Goodhart, R. S., andShills, M. E. (eds.), Modern nutrition in health and disease. Febiger, Philadelphia.

  4. Kaplan, N. O., Goldin, A., Humphreys, S. R., Ciotti, M. M., andVenditti, J. M. 1954. Significance of enzymatically catalyzed exchange reactions in chemotherapy. Science 120:437–440.

    PubMed  Google Scholar 

  5. Woolley, D. W. 1963. Antimetabolites of the water soluble vitamins. Pages 445–480,in Hochster, R. M., andQuastel, J. H. (eds.), Metabolic inhibitors: A comprehensive treatise, Vol. 1. Academic Press, New York.

    Google Scholar 

  6. Desclin, J. C. 1974. Histological evidence supporting the inferior olive as the major source of cerebellar climbing fibers in the rat. Brain Res. 77:365–384.

    PubMed  Google Scholar 

  7. Horita, N., Oyanagi, S., Ishii, T., andIzumiyama, Y. 1978. Ultrastructure of 6-aminonicotinamide induced lesions in the central nervous system of rats. I: Chromatolysis and other lesions in the cervical cord. Acta Neuropathol. 44:111–120.

    PubMed  Google Scholar 

  8. Gibson, G. E., andPeterson, C. 1983. Acetylcholine metabolism in septum and hippocampus in vitro. J. Biol. Chem 258:1142–1145.

    PubMed  Google Scholar 

  9. Barclay, L. L., Gibson, G. E., andBlass, J. P. 1981. The string test: an early behavioral change in thiamine deficiency. Pharmacol. Biochem. Behav. 14:153–157.

    PubMed  Google Scholar 

  10. Sokoloff, L., Reivich, M., Kennedy, C., DesRosiers, M. H., Patlak, C. S., Pettigrew, K. D., Sakurada, O., andShinohara, O. M. 1977. The [14C]-deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28:897–916.

    PubMed  Google Scholar 

  11. Lowry, O. H., Passonneau, J. V., Schulz, D. W., andRock, M. K. 1961. The measurement of pyridine nucleotides by enzymatic cycling. J. Biol. Chem. 236:2746–2755.

    PubMed  Google Scholar 

  12. Klingenberg, M. 1965. Disphosphopyridine nucleotide, Pages 528–530; Reduced diphosphopyridine nucleotide, Pages 531–534,in Bergmeyer, H. U. (ed.), Enzymatic analysis. Academic Press, New York.

    Google Scholar 

  13. Peterson, C., andGibson, G. E. 1982. 3,4-Diaminopyridine alters acetylcholine metabolism and behavior during hypoxia. J. Pharmacol. Exp. Ther. 222:576–582.

    PubMed  Google Scholar 

  14. Garcia-Bunnuel, L., McDougal Jr., D. B., Burch, H. B., Jones, E. M., andTouhill, E. 1962. Oxidized and reduced pyridine nucleotide levels and enzyme activities in brain and liver of niacin deficient rats. J. Neurochem. 9:589–594.

    PubMed  Google Scholar 

  15. Lowry, O. H., andPassonneau, J. V. 1972. A flexible system of enzymatic analysis, Academic Press, New York.

    Google Scholar 

  16. Barclay, L. L., Gibson, G. E., andBlass, J. P. 1981. Impairment of behavior and acetylcholine in thiamin deficiency. J. Pharmacol. Exp. Ther. 217:537–543.

    PubMed  Google Scholar 

  17. Gibson, G. E., Pelmas, C. J., andPeterson, C. 1983. Cholinergic drugs and 4-aminopyridine alter hypoxic-induced behavioral deficits. Pharmacol. Biochem. Behav. 18:909–916.

    PubMed  Google Scholar 

  18. Gibson, G. E., Peterson, C., andJenden, D. J. 1981. Brain acetylcholine synthesis decline with senescence. Science 214:674–676.

    Google Scholar 

  19. Desclin, J. C., andEscubi, J. 1974. Effects of 3-acetylpyridine on the central nervous system of the rat, as demonstrated by silver methods. Brain Res. 77:349–364.

    PubMed  Google Scholar 

  20. Perry, T. L., MacLean, J., Perry Jr., T. L., andHansen, S. 1976. Effects of 3-acetylpyridine on putative neurotransmitter amino acids in rat cerebellum. Brain Res. 109:632–635.

    PubMed  Google Scholar 

  21. Sotelo, C., Hillman, D. E., Zamora, A. J., andLlinas, R. 1975. Climbing fiber deafferentation: its action on Purkinje cell dendritic spines. Brain Res. 98:574–581.

    PubMed  Google Scholar 

  22. Guidotti, A., Biffio, G., andCosta, E. 1975. 3-Acetylpyridine: a tool to inhibit the tremor and the increase of cGMP and content in cerebellar cortex elicited by harmaline. Brain Res. 96:201–205.

    PubMed  Google Scholar 

  23. Jolicoeur, F. B., Rondeau, D. B., Hamel, E., Butterworth, R. F., andBarbeau, A. 1979. Measurement of ataxia and related neurological signs in the laboratory rat. Can. J. Neurol. Sci. 6:209–215.

    PubMed  Google Scholar 

  24. Hakim, A. M., andPappius, H. M. 1981. The effect of thiamin deficiency on local cerebral glucose utilization. Ann. Neurol. 9:334–339.

    PubMed  Google Scholar 

  25. Herken, H., Lange, K., Kolbe, H., andKeller, K. 1974. Pages 41–54,in Genazzani, E., andHerken, H. (eds.), in Central nervous system—studies on metabolic regulation and function. Springer-Verlag, Berlin.

    Google Scholar 

  26. Kauffman, F. C., andJohnson, E. C. 1974. Cerebral energy reserves and glycolysis in neural tissue of 6-aminonicotinamide treated mice. J. Neurobiol. 5:379–392.

    PubMed  Google Scholar 

  27. Kriegelstein, J., andStock, R. 1975. Decreased glycolytic flux rate in the isolated perfused rat brain after pretreatment with 6-aminonicotinamide. Naunyn Schmiede. Arch. Pharmacol. 290:323–337.

    Google Scholar 

  28. Blass, J. P., Gibson, G. E., Duffy, T. E., andPlum, F. 1981. Cholinergic dysfunction: a common denominator in metabolic encephalopathies. Pages 921–928.in Pepeu, G., andLadinski, H. (eds.), Cholinergic mechanisms: Phylogenetic aspects, central and peripheral synapses, and clinical significance. Plenum Press, New York.

    Google Scholar 

  29. Gibson, G. E., andBlass, J. P. 1983. Metabolism and neurotransmission. Pages 633–639,in Lajtha, A. (ed.), Handbook of neurochemistry, Vol. 3, 2nd edition. Plenum Press, New York.

    Google Scholar 

  30. Ghajar, J. B. G., Gibson, G. E., andDuffy, T. E. 1985. Cerebral oxidative metabolism and acetylcholine synthesis during acute hypoglycemia and recovery. J. Neurochem. 40:94–98.

    Google Scholar 

  31. Butterworth, R. F., Hamel, E., Landreville, F., andBarbeau, A. 1978. Cerebellar ataxia produced by 3-acetylpyridine in rat. Can. J. Neurol. Sci. 5:131–139.

    PubMed  Google Scholar 

  32. McBride, W. J., Rea, M. A., andNadi, N. S. 1978. Effects of 3-acetylpyridine on the levels of several amino acids in different CNS regions of the rat. Neurochem. Res. 3:793–801.

    PubMed  Google Scholar 

  33. McBride, W. J., Rea, M. A., Felton, D. L., Sinisi, N., andRhode, B. H. 1980. Levels of several amino acids in the cerebellar peduncles and four medullary nuclei of control and 3-acetylpyridine treated rats. Neurochem. Res. 5:337–344.

    PubMed  Google Scholar 

  34. Nadi, N. S., Kanter, D., McBride, W. J., Aprison, M. H. 1977. Effects of 3-acetylpyridine on several putative neurotransmitter amino acids in the cerebellum and medulla of the rat. J. Neurochem. 280:661–662.

    Google Scholar 

  35. Nakashima, Y., Sanada, H., Utsuki, Y., andKawada, S. 1978. Effect of nicotinic acid on catecholamine synthesis in rat brain. J. Nutr. Sci. Vitaminol. 24:67–76.

    PubMed  Google Scholar 

  36. Sanada, H., Nakashima, Y., Utsuki, Y., andKawada, S. 1978. Effect of niacin deficiency on the metabolism of brain amines in rats. J. Nutr. Sci. Vitaminol. 24:159–166.

    PubMed  Google Scholar 

  37. Scherer, B., andKramer, W. 1972. Influence of niacinamide on brain 5-HT and a possible mode of action. Life Sci. 11:189–195.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibson, G.E., Blass, J.P. Oxidative metabolism and acetylcholine synthesis during acetylpyridine treatment. Neurochem Res 10, 453–467 (1985). https://doi.org/10.1007/BF00964650

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964650

Keywords

Navigation