Skip to main content
Log in

Stimulation by subsynaptosomal fractions of transmitter efflux from plain synaptic vesicle fraction

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The effects were investigated of purified subsynaptic fractions on the efflux of radioactivity from a plain synaptic vesicle fraction which had incorporated [3H]dopamine. About 50% of the radioactivity incorporated into the plain vesicles (120 μg protein) was liberated on exposure to purified synaptic membranes (30 μg protein). The synaptic membrane-dependent efflux appeared to depend on both adenosine triphosphate and divalent cations, especially Ca2+. Of the subcellular fractions used, the heavy microsomal fraction showed the same effects as the synaptic membrane fraction. Purified synaptic junctions exhibited the strongest stimulating effects: the efflux was 2 times greater than that observed with synaptic membranes. The stimulating effects of myelin were less than oneseventh of those of synaptic junctional fraction. These observations may indicate that the transmitters are liberated by interaction of vesicle membrane with synaptic membrane in the presence of ATP and divalent cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EDTA:

ethylenediamine tetraacetic acid

EGTA:

ethyleneglycol bis-(β-aminoethylether)-N,N′-tetraacetic acid

AMP-PNP:

adenyl imidodiphosphate

References

  1. Euler, U. S. V., andLishajko, F. 1963. Effect of adenosine nucleotides on catecholamine release and uptake in isolated adrenergic nerve granules.Acta Physiol. Scand. 59:454–461.

    Google Scholar 

  2. De Potter, M. P., De Schaepdryver, A. F., Moerman, E. J., andSmith, A. D. 1969. Evidence for the release of vesicle proteins together with noradrenaline upon stimulation of the splenic nerve.J. Physiol. (London) 204:102–104p.

    Google Scholar 

  3. Katz, B. 1971. Quantal mechanism of neural transmitter release.Science 173:123–126.

    Google Scholar 

  4. Douglas, W. W., andRubin, R. P. 1963. The mechanism of catecholamine release from the adrenal medulla and the role of calcium in stimulus-secretion coupling.J. Physiol. (London) 167:288–310.

    Google Scholar 

  5. Poisner, A. M., andTrifaró, J. M. 1967. The role of ATP and ATPase in the release of catecholamines from the adrenal medulla. I. ATP-evoked release of catecholamines, ATP, and protein from isolated chromaffin granules.Mol. Pharmacol. 3:561–571.

    Google Scholar 

  6. Heuser, J. E., andReese, T. S. 1973. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction.J. Cell Biol. 57:315–344.

    Google Scholar 

  7. Kadota, K., andKadota, T. 1973. Isolation of coated vesicles, plain synaptic vesicles, and flocculent material from a crude synaptosome fraction of guinea-pig whole brain.J. Cell Biol. 58:135–151.

    Google Scholar 

  8. Tanaka, R., Asaga, H., andTakeda, M. 1976. Nucleotide triphosphate and cation requirement for dopamine uptake by plain synaptic vesicles isolated from rat cerebrums.Brain Res. 115:273–283.

    Google Scholar 

  9. Abood, L. G., Hong, J. S., Takeda, F., andTometsko, A. M. 1976. Preparation and characterization of calcium-binding and other hydrophobic proteins from synaptic membranes.Biochim. Biophys. Acta, 443:412–427.

    Google Scholar 

  10. Rodriguez de Lores Arnaiz, G., Alberici, M., andDe Robertis, E. 1967. Ultrastructure and enzymic studies of cholinergic and non-cholinergic synaptic membranes isolated from brain cortex.J. Neurochem. 14:215–225.

    Google Scholar 

  11. Cotman, C. W., andMatheus, D. A. 1971. Synaptic plasma membranes from rat brain synaptosomes: Isolation and partial characterization.Biochim. Biophys. Acta 249:380–394.

    Google Scholar 

  12. Cotman, C. W., andTaylor, D. 1972. Isolation and structural studies of synaptic complexes from rat brain.J. Cell Biol. 55:696–711.

    Google Scholar 

  13. Davis, G., andBloom, F. E. 1970. Proteins of synaptic junctional complexes.J. Cell Biol. 47:46a.

    Google Scholar 

  14. Norton, W. T., andPoduslo, S. E. 1973. Myelination in rat brain: Method of myelin isolation.J. Neurochem. 21:749–757.

    Google Scholar 

  15. Tanaka, R., Morita, H., andTeruya, A. 1973. Isolation and properties of 5′-mononucleotidase from a membrane fraction of bovine cerebral cortex.Biochim. Biophys. Acta 298:842–849.

    Google Scholar 

  16. Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265–275.

    Google Scholar 

  17. Tanaka, R., Takeda, M., andJaimovich, M. 1976. Characterization of ATPases of plain synaptic vesicle and coated vesicle fractions isolated from rat brains.J. Biochem. 80:831–837.

    Google Scholar 

  18. Wurtman, R. J., andAxelrod, J. 1963. A sensitive and specific assay for the estimation of monoamine oxidase.Biochem. Pharmacol. 12:1439–1441.

    Google Scholar 

  19. Tanaka, R., andStrickland, K. P. 1965. Role of phospholipid in the activation of Na+, K+-activated adenosine triphosphatase of beef brain.Arch. Biochem. Biophys. 111:583–592.

    Google Scholar 

  20. Cerletti, P., Giovenco, M. A., Giordano, M. G., Giovenco, S., andStrom, R. 1967. Succinate dehydrogenase. I. Role of phospholipids.Biochim. Biophys. Acta 146:380–396.

    Google Scholar 

  21. Swanson, M. A. 1955. Glucose-6-phosphatase from liver. Pages 541–543in Colowick, S., andKaplan, N. O. (eds.),Methods in Enzymology, Vol. 2. Academic Press, New York.

    Google Scholar 

  22. Karnovsky, M. J. 1965. A formaldehyde glutaraldehyde fixative of high osmolarity for use in electron microscopy.J. Cell. Biol. 27:137A-138B.

    Google Scholar 

  23. Spurr, A. R. 1969. A low viscosity resin embedding medium for electron microscopy.J. Ultrastruct. Res. 26:31–43.

    Google Scholar 

  24. Helenius, A., andSimons, K. 1975. Solubilization of membranes of detergents.Biochim. Biophys. Acta 415:29–79.

    Google Scholar 

  25. Oka, M., Ohuchi, T., Yoshida, H., andImaizumi, R. 1969. Stimulatory effect of adenosine triphosphate and magnesium on the release of catecholamines from adrenal medullar granules.Jpn. J. Pharmacol. 17:199–207.

    Google Scholar 

  26. Blaustein, M. P., Johnson, E. M., Jr., andNeedleman, P. 1972. Calcium-dependent norepinephrine release from presynaptic nerve endingsin vitro.Proc. Natl. Acad. Sci. USA 69:2237–2240.

    Google Scholar 

  27. Rahaminoff, R., Erulkar, S. D., Alnaes, E., Meiri, H., Totsheuker, S., andRahaminoff, H. 1976. Modulation of transmitter release by calcium ions and nerve impulses. Pages 107–116in Cold Spring Harbor Symposium on Quantitative Biology XL. Cold Spring Harbor Laboratory, New York.

    Google Scholar 

  28. Phillippu, A., andPrzuntek, H. 1967. Noradrenalin-Speicherung im Hypothalamus und Wirkung von Pharmaka auf die isolierten Hypothalamus-Vesikel.Naunyn Schmiedeberg's Arch. Exp. Pathol. Pharmacol. 258:238–250.

    Google Scholar 

  29. Phillippu, A., andHyde, W. 1970. Release of dopamine from subcellular particles of the striatum.Life Sci. 9:361–373.

    Google Scholar 

  30. Cotman, C. W., Haycock, J. W.; andWhite, W. F. 1976. Stimulus-secretion coupling processes in brain: Analysis of noradrenaline and gamma-aminobutyric acid release.J. Physiol. (London) 254:475–505.

    Google Scholar 

  31. Poisner, A. M., andTrifaró, J. M. 1969. The role of adenosine triphosphate and adenosine triphosphatase in the release of catecholamines from the adrenal medulla. III. Similarities between the effects of adenosine triphosphate on chromaffin granules and mitochondria.Mol. Pharmacol. 5:294–299.

    Google Scholar 

  32. Pletscher, A., Berneis, K. H., andDa Prada, M. 1970. A biophysical model for storage and release of biogenic monoamines at the level of the storage organelles. Pages 205–211in Costa, E., andGiacobini, E. (eds.),Biochemical Psychopharmacology, Vol. 2. Raven Press, New York.

    Google Scholar 

  33. Poisner, A. M. 1970. Release of transmitter from storage: A contractile model. Pages 95–108in Costa, E., andGiacobini, E. (eds.),Biochemical Psychopharmacology, Vol. 2. Raven Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeda, M., Tanaka, R. Stimulation by subsynaptosomal fractions of transmitter efflux from plain synaptic vesicle fraction. Neurochem Res 4, 643–654 (1979). https://doi.org/10.1007/BF00964441

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964441

Keywords

Navigation