Skip to main content

Isolation of Synaptic Vesicles from Mammalian Brain

  • Protocol
  • First Online:
Synaptic Vesicles

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2417))

Abstract

Synaptic vesicles (SVs) store neurotransmitters and undergo a fine-tuned regulatory and dynamic cycle of exo- and endocytosis, which is essential for neurotransmission at chemical synapses. The development of protocols for isolating SVs from biological extracts was a fundamental accomplishment since it allowed for characterizing the molecular properties of SVs using biochemical methods. In this chapter, we describe a modified procedure for isolating SVs from a few g of rodent brain and that can be completed within ~12 h. The protocol involves the preparation of isolated nerve terminals from which SVs are released by osmotic shock and then enriched via various centrifugation steps, followed by size exclusion chromatography as final purification step. The final vesicle fraction is 22-fold enriched in SVs over the starting material, and the final yield of SVs obtained using this protocol is approximately 20 μg of protein per gram of mouse brain. The degree of contamination by other organelles and particles monitored by morphology and immunolabeling compares well with that of the classical protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rizo J, Xu J (2015) The synaptic vesicle release machinery. Annu Rev Biophys 44:339–367. https://doi.org/10.1146/annurev-biophys-060414-034057

    Article  CAS  PubMed  Google Scholar 

  2. Jahn R, Fasshauer D (2012) Molecular machines governing exocytosis of synaptic vesicles. Nature 490(7419):201–207. https://doi.org/10.1038/nature11320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rizzoli SO (2014) Synaptic vesicle recycling: steps and principles. EMBO J 33(8):788–822. https://doi.org/10.1002/embj.201386357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sudhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547. https://doi.org/10.1146/annurev.neuro.26.041002.131412

    Article  CAS  PubMed  Google Scholar 

  5. Takamori S, Holt M, Stenius K et al (2006) Molecular anatomy of a trafficking organelle. Cell 127(4):831–846. https://doi.org/10.1016/j.cell.2006.10.030

    Article  CAS  PubMed  Google Scholar 

  6. Hell JW, Maycox PR, Stadler H et al (1988) Uptake of GABA by rat brain synaptic vesicles isolated by a new procedure. EMBO J 7(10):3023–3029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wolosker H, de Souza DO, de Meis L (1996) Regulation of glutamate transport into synaptic vesicles by chloride and proton gradient. J Biol Chem 271(20):11726–11731. https://doi.org/10.1074/jbc.271.20.11726

    Article  CAS  PubMed  Google Scholar 

  8. Farsi Z, Preobraschenski J, van den Bogaart G et al (2016) Single-vesicle imaging reveals different transport mechanisms between glutamatergic and GABAergic vesicles. Science 351(6276):981–984. https://doi.org/10.1126/science.aad8142

    Article  CAS  PubMed  Google Scholar 

  9. Preobraschenski J, Zander JF, Suzuki T et al (2014) Vesicular glutamate transporters use flexible anion and cation binding sites for efficient accumulation of neurotransmitter. Neuron 84(6):1287–1301. https://doi.org/10.1016/j.neuron.2014.11.008

    Article  CAS  PubMed  Google Scholar 

  10. Kiessling V, Ahmed S, Domanska MK et al (2013) Rapid fusion of synaptic vesicles with reconstituted target SNARE membranes. Biophys J 104(9):1950–1958. https://doi.org/10.1016/j.bpj.2013.03.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Park Y, Hernandez JM, van den Bogaart G et al (2012) Controlling synaptotagmin activity by electrostatic screening. Nat Struct Mol Biol 19(10):991–997. https://doi.org/10.1038/nsmb.2375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Holt M, Riedel D, Stein A et al (2008) Synaptic vesicles are constitutively active fusion machines that function independently of Ca2+. Curr Biol 18(10):715–722. https://doi.org/10.1016/j.cub.2008.04.069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boyken J, Gronborg M, Riedel D et al (2013) Molecular profiling of synaptic vesicle docking sites reveals novel proteins but few differences between glutamatergic and GABAergic synapses. Neuron 78(2):285–297. https://doi.org/10.1016/j.neuron.2013.02.027

    Article  CAS  PubMed  Google Scholar 

  14. Gronborg M, Pavlos NJ, Brunk I et al (2010) Quantitative comparison of glutamatergic and GABAergic synaptic vesicles unveils selectivity for few proteins including MAL2, a novel synaptic vesicle protein. J Neurosci 30(1):2–12. https://doi.org/10.1523/JNEUROSCI.4074-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hebb CO, Whittaker VP (1958) Intracellular distributions of acetylcholine and choline acetylase. J Physiol 142(1):187–196. https://doi.org/10.1113/jphysiol.1958.sp006008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Michaelson IA, Whittaker VP, Laverty R et al (1963) Localization of acetylcholine, 5-Hydroxytryptamine and noradrenaline within subcellular particles derived from Guinea pig subcortical brain tissue. Biochem Pharmacol 12:1450–1453. https://doi.org/10.1016/0006-2952(63)90221-1

    Article  CAS  PubMed  Google Scholar 

  17. Whittaker VP, Michaelson IA, Kirkland RJ (1963) The separation of synaptic vesicles from disrupted nervending particles. Biochem Pharmacol 12:300–302. https://doi.org/10.1016/0006-2952(63)90156-4

    Article  CAS  PubMed  Google Scholar 

  18. De Robertis E, Rodriguez De Lores Arnaiz G, Pellegrino De Iraldi A (1962) Isolation of synaptic vesicles from nerve endings of the rat brain. Nature 194:794–795. https://doi.org/10.1038/194794a0

    Article  Google Scholar 

  19. De Robertis E, Rodriguez De Lores Arnaiz G, Salganicoff L et al (1963) Isolation of synaptic vesicles and structural organization of the acetycholine system within brain nerve endings. J Neurochem 10:225–235. https://doi.org/10.1111/j.1471-4159.1963.tb05038.x

    Article  Google Scholar 

  20. Gray EG, Whittaker VP (1962) The isolation of nerve endings from brain: an electron-microscopic study of cell fragments derived by homogenization and centrifugation. J Anat 96:79–88

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Huttner WB, Schiebler W, Greengard P et al (1983) Synapsin I (protein I), a nerve terminal-specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation. J Cell Biol 96(5):1374–1388. https://doi.org/10.1083/jcb.96.5.1374

    Article  CAS  PubMed  Google Scholar 

  22. Nagy A, Baker RR, Morris SJ et al (1976) The preparation and characterization of synaptic vesicles of high purity. Brain Res 109(2):285–309. https://doi.org/10.1016/0006-8993(76)90531-x

    Article  CAS  PubMed  Google Scholar 

  23. Jahn R, Schiebler W, Ouimet C et al (1985) A 38,000-Dalton membrane protein (p38) present in synaptic vesicles. Proc Natl Acad Sci U S A 82(12):4137–4141. https://doi.org/10.1073/pnas.82.12.4137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jahn R, Sudhof TC (1993) Synaptic vesicle traffic: rush hour in the nerve terminal. J Neurochem 61(1):12–21. https://doi.org/10.1111/j.1471-4159.1993.tb03533.x

    Article  CAS  PubMed  Google Scholar 

  25. Ahmed S, Holt M, Riedel D et al (2013) Small-scale isolation of synaptic vesicles from mammalian brain. Nat Protoc 8(5):998–1009. https://doi.org/10.1038/nprot.2013.053

    Article  CAS  PubMed  Google Scholar 

  26. Maycox PR, Deckwerth T, Hell JW et al (1988) Glutamate uptake by brain synaptic vesicles. Energy dependence of transport and functional reconstitution in proteoliposomes. J Biol Chem 263(30):15423–15428

    Article  CAS  PubMed  Google Scholar 

  27. Hell J, Jahn R (2006) Preparation of synaptic vesicles from mammalian brain. In: Cell biology, vol 2. Elsevier Inc., Amsterdam, pp 85–90. https://doi.org/10.1016/b978-012164730-8/50084-8

    Chapter  Google Scholar 

  28. Jahn R, Schiebler W, Greengard P (1984) A quantitative dot-immunobinding assay for proteins using nitrocellulose membrane filters. Proc Natl Acad Sci U S A 81(6):1684–1687. https://doi.org/10.1073/pnas.81.6.1684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685. https://doi.org/10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to sincerely thank Miroslav Gaydarski for the support with the graphical formulation of the figures. We are also thankful to Mehar Monga and Gudrun Heim for the excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Ganzella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ganzella, M., Ninov, M., Riedel, D., Jahn, R. (2022). Isolation of Synaptic Vesicles from Mammalian Brain. In: Dahlmanns, J., Dahlmanns, M. (eds) Synaptic Vesicles. Methods in Molecular Biology, vol 2417. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1916-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1916-2_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1915-5

  • Online ISBN: 978-1-0716-1916-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics