Skip to main content
Log in

Comparison of synaptosomal and glial uptake of pipecolic acid and GABA in rat brain

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The active uptake of [3H]pipecolic acid increased with incubation time and its uptake at 3 min was half of that at 20 min. [14C]GABA uptake rose earlier, and its uptake at 3 min was almost 80% of that at 20 min. On the other hand, a ratio (pellet/medium) of [3H]pipecolic acid uptake into glial cell-enriched fractions, was much less (0.4–0.6) than that of [14C]GABA (25.8–74.1). GABA, 10−4 M, and pipecolic acid, 10−4 M, produced a significant inhibition of [3H]pipecolic acid uptake into P2 fractions. Pipecolic acid, 10−4 M, significantly reduced the synaptosomal and glial uptake of [14C]GABA. GABA, 10−4 M, affected neither spontaneous nor high K+-induced release of [3H]pipecolic acid from brain slices. It is suggested that pipecolic acid is involved in either synaptic transmission or in its modulation at GABA synapses in the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schmidt-Glenewinkel, T., Nomura, T., Nomura, Y., andGiacobini, E. 1977. The conversion of lysine into pipridine, cadaverine and pipecolic acid in the brain and other organs of the mouse. Neurochem. Res. 2:619–637.

    Google Scholar 

  2. Chang, Y. F. 1976. Pipecolic acid pathway: The major lysine metabolic route in the rat brain. Biochem. Biophys. Res. Commun. 69:174–180.

    Google Scholar 

  3. Chang, Y. F. 1978. Lysine metabolism in the rat brain: The pipecolic acid-forming pathway. J. Neurochem. 30:347–354.

    Google Scholar 

  4. Chang, Y. F. 1978. Lysine metabolism in the rat brain: Blood-brain barrier transport, formation of pipecolic acid and human hyperpipecolatemia. J. Neurochem. 30:355–360.

    Google Scholar 

  5. Hernandez, M. F., andChang, Y. F. 1980. In vitro synthesis of 1-pipecolate from 1-lysine is consistent with ∈-N-acetyl-1-lysine as an obligatory intermediate. Biochem. Biophys. Res. Commun. 93:762–769.

    Google Scholar 

  6. Meek, J. L. 1974. Uptake and metabolism of piperidine and pipecolic acid in brain. Fed. Proc. Abst. Pharmacol. 1453:468.

    Google Scholar 

  7. Nomura, Y., Schmidt-Glenewinkel, T., andGiacobini, E. Uptake of piperidine and pipecolic acid by synaptosomes from mouse brain. Neurochem. Res. 5:1163–1174.

  8. Nomura, Y., Okuma, Y., andSegawa, T. 1978. Influence of piperidine and pipecolic acid on the uptake of monoamines, GABA and glycine into P2 fractions of the rat brain and the spinal cord. J. Pharmaco-Dyn. 1:251–255.

    Google Scholar 

  9. Okuma, Y., Nomura, Y., andSegawa, T. 1979. The effect of piperidine and pipecolic acid on high potassium-induced release of noradrenaline, serotonin and GABA from rat brain slices. J. Pharmaco-Dyn. 2:261–265.

    Google Scholar 

  10. Nomura, Y., Okuma, Y., Segawa, T., Schmidt-Glenewinkel, T., andGiacobini, E. 1979. A calcium-dependent, high potassium-induced release of pipecolic acid from rat brain slices. J. Neurochem. 33:803–805.

    Google Scholar 

  11. Kase, Y., Takahama, K., Hashimoto, T., Kaisaku, J., Okano, Y., andMiyata, T. 1980. Electrophoretic study of pipecolic acid, a biogenic imino acid, in the mammalian brain. Brain Res. 193:608–618.

    Google Scholar 

  12. Henn, F. A., andHamberger, A. 1971. Glial cell function: uptake of transmitter substances. Proc. Natl. Acad. Sci. U.S.A. 68:2686–2690.

    Google Scholar 

  13. Minchin, M. C. W., andIversen, L. L. 1974. Release of3H-gamma-aminobutyric acid from glial cells in rat dorsal root ganglia. J. Neurochem. 24:533–540.

    Google Scholar 

  14. Minchin, M. C. W. 1975. Factors influencing the efflux of3H-gamma-aminobutyric acid from sattelite glial cells in rat sensory ganglia. J. Neurochem. 24:571–577.

    Google Scholar 

  15. Roberts, P. J. 1976. Amino acid transport in spinal and sympathetic ganglia. Pages 165–178,in Levi, G., Battistin, L., andLajtha, A. (eds.), Transport Phenomena in the Nervous System, Physiological and Pathological Aspects, Plenum Press, New York.

    Google Scholar 

  16. Burgstahler, A. W., andAiman, C. E. 1960. A direct synthesis ofD,l-baikiain. J. Org. Chem. 25:489–492.

    Google Scholar 

  17. Segawa, T., Nakata, Y., Yajima, H., andKitagawa, K. 1977. Further observation on the lack of active uptake system for substance P in the central nervous system. Jpn. J. Pharmacol. 27:573–580.

    Google Scholar 

  18. Lowry, O. H., Rosebrough, J. N., Farr, A. L., andRandall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  19. Martin, D. L. 1973. Kinetics of the sodium-dependent transport of gamma-aminobutyric acid by synaptosomes. J. Neurochem. 21:345–356.

    Google Scholar 

  20. Levi, G., andRaiteri, M. 1973. Detectability of high and low affinity uptake systems for GABA and glutamate in rat brain slices and synaptosomes. Life Sci. 12:81–88.

    Google Scholar 

  21. Hitzeman, R. J., andLob, H. H. 1978. A comparison of GABA and β-alanine transport and GABA membrane binding in the rat brain. J. Neurochem. 30:471–477.

    Google Scholar 

  22. Johnston, G. A. R., Krogsgaard-Larsen, P., Stephanson, A. L., andTwitchin, B. 1976. Inhibition of the uptake of GABA and related amino acids in rat brain slices by the optical isomers of nipecotic acid. J. Neurochem. 26:1029–1032.

    Google Scholar 

  23. Johnston, G. A. R., Stephanson, A. L., andTwitchin, B. 1976. Uptake and release of nipecotic acid by rat brain slices. J. Neurochem. 26:83–87.

    Google Scholar 

  24. Kase, Y., Kataoka, M., Miyata, T., andOkano, Y. 1973. Pipecolic acid in the dog brain. Life. Sci. 13:867–873.

    Google Scholar 

  25. Schmidt-Glenewinkel, T., Nomura, Y., andGiacobini, E. 1978. Pipecolic acid uptake in mouse brain synaptosomes. 9th Ann. Meet. Am. Soc. Neurochem., Washington, D.C., Abstract 115P.

  26. Schousboe, A., Krogsgaard-Larsen, P., Svenneby, G., andHertz, L. 1978. Inhibition of the high affinity, net uptake of GABA into cultured astrocytes by β-proline, nipecotic acid and other compounds. Brain Res. 153:623–626.

    Google Scholar 

  27. Larsen, O. M., Krogsgaard-Larsen, P., andSchousboe, A. 1980. High affinity uptake of (RS)-nipecotic acid in astrocytes cultured from mouse brain. Comparison with GABA transport. J. Neurochem. 34:970–977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nomura, Y., Okuma, Y., Segawa, T. et al. Comparison of synaptosomal and glial uptake of pipecolic acid and GABA in rat brain. Neurochem Res 6, 391–400 (1981). https://doi.org/10.1007/BF00963854

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00963854

Keywords

Navigation