Skip to main content

Advertisement

Log in

A Brief Review on the Non-protein Amino Acid, Gamma-amino Butyric Acid (GABA): Its Production and Role in Microbes

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Gamma-Aminobutyric acid (GABA) is a non-protein amino acid widely distributed in nature. It is produced through irreversible α-decarboxylation of glutamate by enzyme glutamate decarboxylase (GAD). GABA and GAD have been found in plants, animals, and microorganisms. GABA is distributed throughout the human body and it is involved in the regulation of cardiovascular conditions such as blood pressure and heart rate, and plays a role in the reduction of anxiety and pain. Although researchers had produced GABA by chemical method earlier it became less acceptable as it pollutes the environment. Researchers now use a more promising microbial method for the production of GABA. In the drug and food industry, demand for GABA is immense. So, large scale conversion of GABA by microbes has got much attention. So this review focuses on the isolation source, production, and functions of GABA in the microbial system. We also summarize the mechanism of action of GABA and its shunt pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Steward FC, Thompson JF, Dent CE (1949) γ-Aminobutyric acid: a constituent of the potato tuber. Science 110:439–440

    Google Scholar 

  2. Roberts E, Frankel S (1950) γ-Aminobutyric acid in brain: its formation from glutamic acid. J Biol Chem 187:55–63

    PubMed  CAS  Google Scholar 

  3. Roberts E, Eidelberg E (1960) Metabolic and neurophysiological roles of γ-aminobutyric acid. Int Rev Neurobiol 2:279–332. https://doi.org/10.1016/S0074-7742(08)60125-7

    Article  PubMed  CAS  Google Scholar 

  4. Hao R, Schmit JC (1993) Cloning of the gene for glutamate decarboxylase and its expression during conidiation in Neurospora crassa. Biochem J 293:735–738. https://doi.org/10.1042/bj2930735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Shelp BJ, Bown AW, McLean MD (1999) Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci 4:446–452. https://doi.org/10.1016/S1360-1385(99)01486-7

    Article  PubMed  CAS  Google Scholar 

  6. Kono I, Himeno K (2000) Changes in γ-aminobutyric acid content during beni-koji making. Biosci Biotechnol Biochem 64(3):617–619. https://doi.org/10.1271/bbb.64.617

    Article  PubMed  CAS  Google Scholar 

  7. Leventhal AG, Wang Y, Pu M, Zhou Y, Ma Y (2003) GABA and its agonists improved visual cortical function in senescent monkeys. Science 300:812–815. https://doi.org/10.1126/science.1082874

    Article  PubMed  CAS  Google Scholar 

  8. Ueda Y, Doi T, Nagatomo K, Tokumaru J, Takaki M, Willmore LJ (2007) Effect of levetiracetam on molecular regulation of hippocampal glutamate and GABA transporters in rats with chronic seizures induced by amygdalar FeCl3 injection. Brain Res 1151:55–61. https://doi.org/10.1016/j.brainres.2007.03.021

    Article  PubMed  CAS  Google Scholar 

  9. Manyam BV, Katz L, Hare TA, Kaniefski K, Tremblay RD (1981) Isoniazid-induced elevation of CSF GABA levels and effects on chorea in Huntington’s disease. Ann Neurol 10:35–37

    Article  CAS  Google Scholar 

  10. Kim JY, Lee MY, Ji GE, Lee YS, Hwang KT (2009) Production of γ-aminobutyric acid in black raspberry juice during fermentation by Lactobacillus brevis GABA100. Int J Food Microbiol 130:12–16. https://doi.org/10.1016/j.ijfoodmicro.2008.12.028

    Article  PubMed  CAS  Google Scholar 

  11. Cellot G, Cherubini E (2014) GABAergic signaling as therapeutic target for autism spectrum disorders. Front Pediatr 2:70. https://doi.org/10.3389/fped.2014.00070

    Article  PubMed  PubMed Central  Google Scholar 

  12. Balázs R, Machiyama Y, Hammond BJ, Julian T, Richter D (1970) The operation of the γ-aminobutyrate bypath of the tricarboxylic acid cycle in brain tissue in vitro. Biochem J 116:445–467. https://doi.org/10.1042/bj1160445

    Article  PubMed  PubMed Central  Google Scholar 

  13. Roberts E, Kuriyama K (1968) Biochemical-physiological correlations in studies of gamma-aminobutyric acid system. Brain Res 8:1–35. https://doi.org/10.1016/0006-8993(68)90170-4

    Article  PubMed  CAS  Google Scholar 

  14. Andriamampandry C, Siffert JC, Schmitt M, Garnier JM, Staub A, Muller C, Gobaille S, Mark J, Maitre M (1998) Cloning of a rat brain succinic semialdehyde reductase involved in the synthesis of the neuromodulator γ-hydroxybutyrate. Biochem J 334:43–50. https://doi.org/10.1042/bj3340043

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Breitkreuz KE, Allan WL, Van Cauwenberghe OR, Jakobs C, Talibi D, André B, Shelp BJ (2003) A novel γ- hydroxybutyrate dehydrogenase: identification and expression of an Arabidopsis cDNA and potential role under oxygen deficiency. J Biol Chem 278:41552–41556. https://doi.org/10.1074/jbc.M305717200

    Article  PubMed  CAS  Google Scholar 

  16. Saito N, Robert M, Kochi H, Matsuo G, Kakazu Y, Soga T, Tomita M (2009) Metabolite profiling reveals YihU as a novel hydroxybutyrate dehydrogenase for alternative succinic semialdehyde metabolism in Escherichia coli. J Biol Chem 284:16442–16451. https://doi.org/10.1074/jbc.M109.002089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Fait A, Fromm H, Walter D, Galili G, Fernie AR (2008) Highway or byway: the metabolic role of the GABA shunt in plants. Trends Plant Sci 13:14–19. https://doi.org/10.1016/j.tplants.2007

    Article  PubMed  CAS  Google Scholar 

  18. Shelp BJ, Bozzo GG, Trobacher CP, Zarei A, Deyman KL, Brikis BJ (2012) Hypothesis/review: contribution of putrescine to 4-aminobutyrate (GABA) production in response to abiotic stress. Plant Sci 193–194:130–135. https://doi.org/10.1016/j.plantsci.2012.06.001

    Article  PubMed  CAS  Google Scholar 

  19. Signorelli S, Dans PD, Coitiño EL, Borsani O, Monza J (2015) Connecting proline and γ-aminobutyric acid in stressed plants through non-enzymatic reactions. PLoS ONE 10(3):e0115349. https://doi.org/10.1371/journal.pone.0115349

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Siragusa S, De Angelis M, Di Cagno R, Rizzello CG, Coda R, Gobbetti M (2007) Synthesis of gamma-aminobutyric acid by Lactic acid bacteria isolated from a variety of Italian cheeses. Appl Environ Microbiol 1(73):7283–7290

    Article  CAS  Google Scholar 

  21. Nomura M, Kimoto H, Someya Y, Suzuki I (1999) Novel characteristic for distinguishing Lactococcus lactis subsp.lactis from subsp.cremoris. Int J Syst Bacteriol 49:163–166. https://doi.org/10.1099/00207713-49-1-163

    Article  PubMed  Google Scholar 

  22. Kim SH, Shin BH, Kim YH, Nam SW, Jeo SJ (2007) Cloning and expression of a full- length glutamate decarboxylase gene from Lactobacillus brevis BH2. Biotechnol Bioprocess Eng 12:707–712. https://doi.org/10.1007/bf02931089

    Article  Google Scholar 

  23. Seo MJ, Lee JY, Nam YD, Lee SY, Park SL, Yi SH, Lee MH, Roh SW, Choi HJ, Lim SL (2013) Production of γ-aminobutyric acid by Lactobacillus brevis 340G isolated from Kimchi and its application to skim milk. Food Eng Prog 17:418–423. https://doi.org/10.13050/foodengprog.2013.17.4.418

    Article  Google Scholar 

  24. Binh TTT, Ju WT, Jung WJ, Park RD (2014) Optimization of Gamma-aminobutyric acid production in a newly isolated Lactobacillus brevis. Biotechnol Lett 36:93–98. https://doi.org/10.1007/s10529-013-1326-z

    Article  PubMed  CAS  Google Scholar 

  25. Lim HS, Cha IT, Roh SW, Shin HH, Seo MJ (2017) Enhanced production of gamma-aminobutyric acid by optimizing culture conditions of Lactobacillus brevis HYE1 isolated from Kimchi, a Korean fermented food. J Microbiol Biotechnol 27(3):450–459. https://doi.org/10.4014/jmb.1610.10008

    Article  PubMed  CAS  Google Scholar 

  26. Park SY, Lee JW, Lim SD (2014) The probiotic characteristics and GABA production of Lactobacillus plantarum K154 isolated from Kimchi. Food Sci Biotechnol 23(6):1951–1957. https://doi.org/10.1007/s10068-014-0266-2

    Article  CAS  Google Scholar 

  27. Lu XX, Xie C, Gu Z (2009) Optimisation of fermentative parameters for GABA enrichment by Lactococcus lactis. Czech J Food Sci 27(6):433–442

    Article  CAS  Google Scholar 

  28. Kim MJ, Kim KS (2012) Isolation and identification of γ-aminobutyric acid (GABA)-producing lactic acid bacteria from Kimchi. J Korean Soc Appl Biol Chem 55:777–785. https://doi.org/10.1007/s13765-012-2174-6

    Article  CAS  Google Scholar 

  29. Cho Ran Y, Chang JY, Chang HC (2007) Production of γ-aminobutyric acid (GABA) by Lactobacillus buchneri isolated from kimchi and its neuroprotective effect on neuronal cells. J Microbiol Biotechnol 17(1):104–109

    PubMed  CAS  Google Scholar 

  30. Park JY, Jeong SJ, Kim JH (2014) Characterization of a glutamate decarboxylase (GAD) gene from Lactobacillus zymae. Biotechnol Lett 36:1791–1799. https://doi.org/10.1007/s10529-014-1539-9

    Article  PubMed  CAS  Google Scholar 

  31. Yokoyama S, Hiramatsu J, Hayakawa K (2002) Production of y-aminobutyric acid from alcohol distillery lees by Lactobacillus brevis IFO- 12005. J Biosci Bioeng 93(1):95–97

    Article  CAS  Google Scholar 

  32. Thwe SM, Kobayashi T, Luan T, Shirai T, Onodera M, Sato N, Imada C (2011) Isolation, characterization and utilization of γ-aminobutyric acid (GABA)-producing lactic acid bacteria from Myanmar fishery products fermented with boiled rice. Fish Sci 77:279–288. https://doi.org/10.1007/s12562-011-0328-9

    Article  CAS  Google Scholar 

  33. Liao WC, Wang CY, Shyu YT, Yu RC, Ho KC (2013) Influence of preprocessing methods and fermentation of adzuki beans on γ-aminobutyric acid (GABA) accumulation by lactic acid bacteria. J Funct Foods 5:1108–1115. https://doi.org/10.1016/j.jff.2013.03.006

    Article  CAS  Google Scholar 

  34. Yang SY, Lü FX, Lu ZX, Bie XM, Jiao Y, Sun LJ, Yu B (2008) Production of γ-aminobutyric acid by Streptococcus salivarius subsp. thermophilus Y2 under submerged fermentation. Amino Acids 34:473–478. https://doi.org/10.1007/s00726-007-0544-x

    Article  PubMed  CAS  Google Scholar 

  35. Kook MC, Cho SC, Cheigh CI, Park H, Kim SS, Jeong MH, Pyun YR, Lee HY (2010) Study of γ-aminobutyric acid (GABA) production by Lactobacillus sakei B2-16. Food Eng Progress 20:183–189

    Google Scholar 

  36. Watanabe Y, Hayakawa K, Ueno H (2011) Effect of co-culturing LAB on GABA production. J Biol Macromol 11(1):3–13

    Article  CAS  Google Scholar 

  37. Gomaa EZ (2015) Enhancement of γ-Aminobutyric acid production by co-culturing of two Lactobacilli strains. Asian J Biotechnol 7(3):108–118. https://doi.org/10.3923/ajbkr.2015.108.118

    Article  CAS  Google Scholar 

  38. Krishnaswamy PR, Giri KV (1953) The occurrence of 4-aminobutyric acid and glutamic acid decarboxylase in red yeast (Rhodotorula glutinis). Curr Sci 22:143–144

    CAS  Google Scholar 

  39. Su YC, Wang JJ, Lin TT, Pan TM (2003) Production of the secondary metabolites gamma-aminobutyric acid and monacolin K by Monascus. J Ind Microbiol Biotechnol 30:41–46. https://doi.org/10.1007/s10295-002-0001-5

    Article  PubMed  CAS  Google Scholar 

  40. Schmit JC, Brody S (1975) Neurospora crassa conidial germination: role of endogenous amino acid pools. J Bacteriol 124:232–242

    Article  CAS  Google Scholar 

  41. Kubicek CP, Hampel W, Röhr M (1979) Manganese deficiency leads to elevated amino acid pools in critic acid accumulating Aspergillus niger. Arch Microbiol 123:73–79. https://doi.org/10.1007/bf00403504

    Article  PubMed  CAS  Google Scholar 

  42. Masuda K, Guo X, Uryu N, Hagiwara T, Watabe S (2008) Isolation of marine yeasts collected from the pacific ocean showing a high production of γ-aminobutyric acid. Biosci Biotechnol Biochem 72(12):3265–3272. https://doi.org/10.1271/bbb.80544

    Article  PubMed  CAS  Google Scholar 

  43. Dikshit R, Tallapragada P (2015) Screening and optimization of γ-aminobutyric acid production from Monascus sanguineus under solid-state fermentation. Front Life Sci 8(2):172–181. https://doi.org/10.1080/21553769.2015.1028654

    Article  CAS  Google Scholar 

  44. Jannoey P, Niamsup H, Lumyong S, Suzuki T, Katayama T, Chairote G (2010) Comparison of gamma-aminobutyric acid production in Thai rice grains. World J Microbiol Biotechnol 26:257–263. https://doi.org/10.1007/s11274-009-0168-2

    Article  CAS  Google Scholar 

  45. Aoki H, Uda I, Tagami K, Furuya Y, Endo Y, Fujimoto K (2003) The production of a new tempeh-like fermented soybean containing a high level of γ-aminobutyric acid by anaerobic incubation with Rhizopus. Biosci Biotechnol Biochem 67(5):1018–1023. https://doi.org/10.1271/bbb.67.1018

    Article  PubMed  CAS  Google Scholar 

  46. Huang J, Mei L, Wu H, Lin D (2007) Biosynthesis of γ-aminobutyric acid (GABA) using immobilized whole cells of Lactobacillus brevis. World J Microbiol Biotechnol 23:865–871. https://doi.org/10.1007/s11274-006-9311-5

    Article  CAS  Google Scholar 

  47. Villegas JM, Brown L, Savoy de Giori G, Hebert EM (2016) Optimization of batch culture conditions for GABA production by Lactobacillus brevis CRL 1942, isolated from quinoa sourdough. LWT-Food Sci Technol 67:22–26. https://doi.org/10.1016/j.lwt.2015.11.027

    Article  CAS  Google Scholar 

  48. Franciosi E, Carafa I, Nardin T, Schiavon S, Poznanski E, Cavazza A, Larcher R, Tuohy KM (2015) Biodiversity and γ-aminobutyric acid production by lactic acid bacteria isolated from traditional alpine raw cow’s milk cheeses. Biomed Res Int. https://doi.org/10.1155/2015/625740

    Article  PubMed  PubMed Central  Google Scholar 

  49. Komatsuzaki N, Shima J, Kawamoto S, Momose H, Kimura T (2005) Production of γ-aminobutyric acid by Lactobacillus paracaesai isolated from traditional fermented foods. Food Microbiol 22(6):497–504. https://doi.org/10.1016/j.fm.2005.01.002

    Article  CAS  Google Scholar 

  50. Ko CY, Lin HTV, Tsai GJ (2013) Gamma-aminobutyric acid production in black soybean milk by Lactobacillus brevis FPA 3709 and the antidepressant effect of the fermented product on a forced swimming rat model. Process Biochem 48:559–568. https://doi.org/10.1016/j.procbio.2013.02.021

    Article  CAS  Google Scholar 

  51. Lacroix N, St-Gelais D, Champagne C, Vuillemard JC (2013) Gamma aminobutyric acid-producing abilities of lactococcal strains isolated from old-style cheese starters. Dairy Sci Technol 93:315–327. https://doi.org/10.1007/s13594-013-0127-4

    Article  CAS  Google Scholar 

  52. Linares DM, O’callaghan TF, O’Connor PM, Ross RP, Stanton C (2016) Streptococcus thermophilus APC 151 strain is suitable for the manufacture of naturally GABA-enriched bioactive yoghurt. Front Microbiol. https://doi.org/10.3389/fmicb.2016.01876

    Article  PubMed  PubMed Central  Google Scholar 

  53. Barrett E, Ross RP, O’Toole PW, Fitzgerald GF, Stanton C (2012) γ-aminobutyric acid (GABA) production by culturable bacteria from the human intestine. J Appl Microbiol 113:411–417. https://doi.org/10.1111/j.1365-2672.2012.05344.x

    Article  PubMed  CAS  Google Scholar 

  54. Tajabadi N, Ebrahimpour A, Baradaran A, Rahim RA, Mahyudin NA, Manap MY, Bakar FA, Saari N (2015) Optimization of γ-aminobutyric acid production by Lactobacillus plantarum Taj-Apis362 from honeybees. Molecules 20:6654–6669. https://doi.org/10.3390/molecules20046654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Park KB, Oh SH (2006) Isolation and characterization of Lactobacillus buchneri strains with high gamma-aminobutyric acid producing capacity from naturally aged cheese. Food Sci Biotechnol 15:86–90

    CAS  Google Scholar 

  56. Lu X, Xie C, Gu Z (2008) Isolation of γ-Aminobutyric acid producing bacteria and optimization of fermentation medium. Biochem Eng J 41:48–52

    Article  CAS  Google Scholar 

  57. Mountfort DO, Pybus V (1992) Regulatory influences on the production of gamma aminobutyric acid by a marine pseudomonad. Appl Environ Microbiol 58:237–242

    Article  CAS  Google Scholar 

  58. Sun T, Zhao S, Wang H, Cai C, Chen Y, Zhang H (2009) ACE-inhibitory activity and gamma-aminobutyric acid content of fermented skim milk by Lactobacillus helveticus isolated from Xinjiang koumiss in China. Eur Food Res Technol 228:607–612. https://doi.org/10.1007/s00217-008-0969-9

    Article  CAS  Google Scholar 

  59. Das D, Goyal A (2015) Antioxidant activity and γ-aminobutyric acid (GABA) producing ability of probiotic Lactobacillus plantarum DM5 isolated from Marcha of Sikkim. Food Sci Technol 61:263–268. https://doi.org/10.1016/j.lwt.2014.11.013

    Article  CAS  Google Scholar 

  60. Barla F, Koyanagi T, Tokuda N, Matsui H, Katayama T, Kumagai H, Michihata T, Sasaki T, Tsuji A, Enomoto T (2016) The γ-aminobutyric acid-producing ability under low pH conditions of lactic acid bacteria isolated from traditional fermented foods of Ishikawa Prefecture, Japan, with a strong ability to produce ACE-inhibitory peptides. Biotechnol Rep 10:105–110. https://doi.org/10.1016/j.btre.2016.04.002

    Article  Google Scholar 

  61. Wu CH, Hsueh YH, Kuo JM, Liu SJ (2018) Characterization of potential probiotic Lactobacillus brevis RK03 and efficient production of γ-aminobutyric acid in batch fermentation. Int J Mol Sci 19:143. https://doi.org/10.3390/ijms.19010143

    Article  PubMed Central  Google Scholar 

  62. Sa HD, Park JY, Jeong SJ, Lee KW, Kim JH (2015) Characterization of glutamate decarboxylase (GAD) from Lactobacillus sakei A156 isolated from Jeot-gal. J Microbiol Biotechnol 25(5):696–703. https://doi.org/10.4014/jmb.1412.12075

    Article  PubMed  CAS  Google Scholar 

  63. Sanchart C, Rattanapor NO, Haltrich D, Phukpattaranont P, Maneerat S (2017) Lactobacillus futsaii CS3, a New GABA-producing strain isolated from Thai Fermented Shrimp (Kung-Som). Indian J Microbiol 57(2):211–217. https://doi.org/10.1007/s12088-016-0632-2

    Article  PubMed  CAS  Google Scholar 

  64. Xiong Q, Xu Z, Xu L, Yao Z, Li S, Xu H (2017) Efficient production of γ-GABA using recombinant E. coli expressing glutamate decarboxylase (GAD) derived from eukaryote Saccharomyces cerevisiae. Appl Biochem Biotechnol 183(4):1390–1400. https://doi.org/10.1007/s12010-017-2506-4

    Article  PubMed  CAS  Google Scholar 

  65. Yang H, Xing R, Hu L, Liu S, Li P (2015) Accumulation of γ-aminobutyric acid by Enterococcus avium 9184 in scallop solution in a two-stage fermentation strategy. Microb Biotechnol 9(4):478–485. https://doi.org/10.1111/1751-7915.12301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Wang Y, Wang Y, Lang C, Wei D, Xu P, Xie J (2015) Genome sequence of Lactobacillus curieae CCTCC M 2011381T, a novel producer of gamma-aminobutyric acid. Genome Announc. https://doi.org/10.1128/genomea.00552-15

    Article  PubMed  PubMed Central  Google Scholar 

  67. Gao Q, Duan Q, Wang D, Zhang Y, Zheng C (2013) Separation and purification of γ-aminobutyric acid from fermentation broth by flocculation and chromatographic methodologies. J Agric Food Chem 61(8):1914–1919. https://doi.org/10.1021/jf304749v

    Article  PubMed  CAS  Google Scholar 

  68. Lee KW, Shim JM, Yao Z, Kim JA, Kim HJ, Kim JH (2017) Characterization of a glutamate decarboxylase (GAD) from Enterococcus avium M5 isolated from Jeotgal, a Korean fermented seafood. J Microbiol Biotechnol 27(7):1216–1222. https://doi.org/10.4014/jmb.1701.01058

    Article  PubMed  CAS  Google Scholar 

  69. Lim HS, Cha IT, Lee H, Seo MJ (2015) Optimization of γ-aminobutyric acid production by Enterococcus faecium JK29 isolated from a traditional fermented foods. Microbiol Biotechnol Lett 44(1):26–33. https://doi.org/10.4014/mbl.1512.12004

    Article  CAS  Google Scholar 

  70. Lin Q, Li D, Qin H (2017) Molecular cloning, expression and immobilization of glutamate decarboxylase from Lactobacillus fermentum YS2. Electron J Biotechnol 27:8–13. https://doi.org/10.1016/j.ejbt.2017.03.002

    Article  CAS  Google Scholar 

  71. Tsuchiya K, Nishimura K, Iwahara M (2003) Purification and characterization of glutamate decarboxylase from Aspergillus oryzae. Food Sci Technol Res 9(3):283–287

    Article  CAS  Google Scholar 

  72. Lee BJ, Kim JS, Kang YM, Lim JH, Kim YM, Lee MS, Jeong MH, Ahn CB, Je JY (2010) Antioxidant activity and γ-aminobutyric acid (GABA) content in sea tangle fermented by Lactobacillus brevis BJ20 isolated from traditional fermented foods. Food Chem 122(1):271–276. https://doi.org/10.1016/j.foodchem.2010.02.071

    Article  CAS  Google Scholar 

  73. Harnentis H, Nurmiati N, Marlida Y, Adzitey F, Huda N (2019) γ-Aminobutyric acid production by selected lactic acid bacteria isolate of an Indonesian indigenous fermented buffalo milk (dadih) origin. Vet World 12(8):1352–1357

    Article  Google Scholar 

  74. Ribeiro SC, Domingos-Lopes MFP, Stanton C, Ross RP, Silva CCG (2018) Production of γ-aminobutyric acid (GABA) by Lactobacillus otakiensis and other Lactobacillus sp. isolated from traditional Pico cheese. Int J Dairy Technol 3:150. https://doi.org/10.1111/1471-0307.12527

    Article  CAS  Google Scholar 

  75. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544

    Article  CAS  Google Scholar 

  76. Cotter PD, Ryan S, Gahan CGM, Hill C (2005) Presence of GadD1 glutamate decarboxylase in selected L. monocytogenes strains is associated with an ability to grow at low pH. Appl Environ Microbiol 71:2832–2839

    Article  CAS  Google Scholar 

  77. Brasca M, Hogenboom JA, Morandi S, Rosi V, D’Incecco P, Silvetti T, Pellegrino L (2016) Proteolytic activity and production of γ-aminobutyric acid by Streptococcus thermophilus cultivated in microfiltered pasteurized milk. J Agric Food Chem 64(45):8604–8614. https://doi.org/10.1021/acs.jafc.6b03403

    Article  PubMed  CAS  Google Scholar 

  78. Yunes RA, Poluektova EU, Dyachkova MS, Klimina KM, Kovtun AS et al (2016) GABA production and structure of gadB/gadC genes in Lactobacillus and Bifidobacterium strains from human microbiota. Anaerobe 42:197–204. https://doi.org/10.1016/j.anaerobe.2016.10.011

    Article  PubMed  CAS  Google Scholar 

  79. Tavakoli Y, Esmaeili A, Rabbani M (2015) Identification and molecular cloning of glutamate decarboxylase gene from Lactobacillus casei. Mol Biol Res Commun 4(3):161–165

    PubMed  PubMed Central  CAS  Google Scholar 

  80. Taherzadeh M, Esmaeili A, Rabbani M (2015) Molecular gene cloning and sequencing of glutamate decarboxylase gene from Lactobacillus delbrueckii and Lactobacillus reuteri. J Paramed Sci. https://doi.org/10.22037/jps.v6i4.10626

    Article  Google Scholar 

  81. Kook MC, Seo MJ, Cheigh CI, Lee SJ, Pyun YR, Park H (2010) Enhancement of γ-aminobutyric acid production by Lactobacillus sakei B2-16 expressing glutamate decarboxylase from Lactobacillus plantarum ATCC 14917. J Korean Soc Appl Biol Chem 53(6):816–820. https://doi.org/10.3839/jksabc.2010.123

    Article  CAS  Google Scholar 

  82. Castanie-Cornet MP, Penfound TA, Smith D, Elliot JF, Foster JW (1999) Control of acid resistance in Escherichia coli. J Bacteriol 181:3525–3535

    Article  CAS  Google Scholar 

  83. Cotter PD, Hill C (2003) Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol Mol Biol Rev 67(3):429–453. https://doi.org/10.1128/mmbr.67.3.429-453.2003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Richard H, Foster JW (2004) Escherichia coli glutamate- and arginine-dependent acid resistance systems increase internal pH and reverse transmembrane potential. J Bacteriol 186:6032–6041. https://doi.org/10.1128/jb.186.18.6032-6041.2004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Dagorn A, Chapalain A, Mijouin L, Hillion M, Duclairoir C, Chevalier S, Taupin L, Orange N, Feuilloley M (2013) Effect of GABA, a bacterial metabolite, on Pseudomonas fluorescens surface properties and cytotoxicity. Int J Mol Sci 14:12186–12204. https://doi.org/10.3390/ijms140612186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Chevrot R, Rosen R, Haudecoeur E, Cirou A, Shelp BJ, Ron E, Faure D (2006) GABA controls the level of quorum-sensing signal in Agrobacterium tumefaciens. Proc Natl Acad Sci USA 103(19):7460–7464

    Article  CAS  Google Scholar 

  87. Morse DE, Duncan H, Hooker N, Baloun A, Young G (1980) GABA induces behavioral and developmental metamorphosis in planktonic molluscan larvae. Fed Proc 39:3237–3241

    PubMed  CAS  Google Scholar 

  88. Richard HT, Foster JW (2003) Acid resistance in Escherichia coli. Adv Appl Microbiol 52:167–186. https://doi.org/10.1016/s0065-2164(03)01007-4

    Article  PubMed  CAS  Google Scholar 

  89. Chou HT, Kwon DH, Hegazy M, Lu CD (2008) Transcriptome analysis of agmatine and putrescine catabolism in Pseudomonas aeruginosa PAO1. J Bacteriol 190:1966–1975. https://doi.org/10.1128/jb.01804-07

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Foerster CW, Foerster HF (1973) Glutamic acid decarboxylase in spores of Bacillus megaterium and its possible involvement in spore germination. J Bacteriol 114(3):1090–1098

    Article  CAS  Google Scholar 

  91. Cohen I, Navarro V, Clemenceau S, Baulac M, Miles R (2002) On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science 298(5597):1418–1421. https://doi.org/10.1126/science.1076510

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The fourth Author acknowledges the financial aid from UGC Kothari project in the form of fellowship and contingency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayaraman Angayarkanni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarasa, S.B., Mahendran, R., Muthusamy, G. et al. A Brief Review on the Non-protein Amino Acid, Gamma-amino Butyric Acid (GABA): Its Production and Role in Microbes. Curr Microbiol 77, 534–544 (2020). https://doi.org/10.1007/s00284-019-01839-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01839-w

Navigation