Skip to main content
Log in

A study of the capacity of myelinated and unmyelinated nerves to induce experimental allergic neuritis

  • Original Investigations
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Summary

The capacity of myelin-free Schwann cells to induce EAN was investigated. Human foetal peripheral nerve and human adult abdominal vagus nerve, both containing little or no myelin, failed to induce EAN when injected intradermally (together with Freund's adjuvant) into rabbits. In contrast, human adult sciatic nerve, which is heavily myelinated, induced characteristic signs and histopathology of EAN. Thus in the “myelin-free” “antigens” Schwann cell plasma membrane, from which myelin is apparently derived, failed to induce EAN. Reasons for this paradox are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allt, G., Evans, E. M., Evans, D. H. L.: The vulnerability of immature rabbits to experimental allergic neuritis: a light and electron microscope study. Brain Res.29, 271–291 (1971).

    Google Scholar 

  • Alvord, E. C.: Studies on the etiology and pathogenesis of experimental meningoencephalomyelitis in the guinea pig. J. Immunol.61, 355–367 (1949).

    Google Scholar 

  • Apffel, C. A., Peters, J. H.: Regulation of antigenic expression. J. theor. Biol.26, 47–59 (1970).

    Google Scholar 

  • Åström, K.-E., Waksman, B. H.: The passive transfer of experimental allergic encephalomyelitis and neuritis with living lymphoid cells. J. Path. Bact.83, 89–106 (1962).

    Google Scholar 

  • Ballin, R. H. M., Thomas, P. K.: Electron microscope observations on demyelination and remyelination in experimental allergic neuritis. Part. I. Demyelination. J. neurol. Sci.8, 1–18 (1968).

    Google Scholar 

  • ——: Electron microscope observations on demyelination and remyelination in experimental allergic neuritis. Part 2. Remyelination. J. neurol. Sci.8, 225–237 (1969).

    Google Scholar 

  • Carnegie, P. R., McPherson, T. A., Robson, G. S. M.: Experimental autoimmune encephalomyelitis. Digestion of basic protein of human myelin with cyanogen bromide and trypsin. Immunology19, 55–63 (1970).

    Google Scholar 

  • Cravioto, H.: The role of Schwann cells in the development of human peripheral nerves: An electron microscopic study. J. Ultrastruct. Res.12, 634–651 (1965).

    Google Scholar 

  • Davison, A. N.: Biochemistry and the myelin sheath. In: The scientific basis of medicine, pp. 220–235. London: Athlone Press 1969.

    Google Scholar 

  • Dickinson, J. P., Jones, K. M., Aparicio, S. R., Lumsden, C. E.: Localisation of encephalitogenic basic protein in the intraperiod line of lamellar myelin. Nature (Lond.)227, 1133 to 1134 (1970).

    Google Scholar 

  • Evans, D. H. L., Murray, J. G.: Histological and functional studies on the fibre composition of the vagus nerve of the rabbit. J. Anat. (Lond.)88, 320–337 (1954).

    Google Scholar 

  • Eylar, E. H., Caccam, J., Jackson, J. J., Westall, F. C., Robinson, A. B.: Experimental allergic encephalomyelitis. Synthesis of disease-inducing site of the basic protein. Science168, 1220–1223 (1970).

    Google Scholar 

  • Gabella, G.: Personal communication (1971).

  • Gamble, H. J.: Further electron microscope studies of human foetal peripheral nerves. J. Anat. (Lond.)100, 487–502 (1966).

    Google Scholar 

  • Gaitonde, M. K., Martenson, R. E.: Metabolism of highly basic proteins of rat brain during postnatal development. J. Neurochem.17, 551–563 (1970).

    Google Scholar 

  • Geren, B. B.: The formation from the Schwann cell surface of myelin in the peripheral nerves of chick embryos. Exp. Cell Res.7, 558–562 (1954).

    Google Scholar 

  • Hall, J. I.: Studies on demyelinated peripheral nerves in guinea pigs with experimental allergic neuritis. A histological and electrophysiological study. Part I. Symptomatology and histological observations. Brain90, 297–312 (1967).

    Google Scholar 

  • Kabat, E. A., Wolf, A., Bezer, A. E.: The rapid production of acute disseminated encephalomyelitis in rhesus monkeys by injection of heterologous and homologous brain tissue with adjuvants. J. exp. Med.88, 117–130 (1947).

    Google Scholar 

  • ———: Studies on acute disseminated encephalomyelitis produced experimentally in Rhesus monkeys. J. exp. Med.88, 417–426 (1948).

    Google Scholar 

  • Kibler, R. F., Shapira, R., McKneally, S., Jenkins, J., Selden, P., Chou, F.: Encephalitogenic protein: Structure. Science164, 577–580 (1969).

    Google Scholar 

  • Kies, M. W., Murphy, J. B., Alvord, E. C.: Fractionation of guinea pig brain proteins with encephalitogenic activity. Fed. Proc.19, 207 (1960).

    Google Scholar 

  • —, Thompson E. B., Ellsworth, C. A.: The relationship of myelin proteins to experimental allergic encephalomyelitis. Ann. N. Y. Acad. Sci.122, 148–160 (1965).

    Google Scholar 

  • Laatsch, R. H., Kies, M. W., Gordon, S., Alvord, E. C.: The encephalomyelitic activity of myelin isolated by ultracentrifugation. J. exp. Med.115, 777–788 (1962).

    Google Scholar 

  • Lampert, P. W.: Mechanism of demyelination in experimental allergic neuritis. Electron microscope studies. Lab. Invest.20, 127–138 (1969).

    Google Scholar 

  • Langley, O. K.: Sialic acid and membrane contact relationships in peripheral nerve. Exp. Cell Res.68, 97–105 (1971).

    Google Scholar 

  • McFarland, H. F.: Immunofluorescent study of circulating antibody in experimental allergic encephalomyelitis. Proc. Soc. exp. Biol. (N. Y.)133, 1195–1200 (1970).

    Google Scholar 

  • Mickel, H. S., Gilles, F. H.: Changes in glial cells during human telencephalic myelinogenesis. Brain93, 337–346 (1970).

    Google Scholar 

  • Ochoa, J.: The sural nerve of the human foetus: electron microscope observations and counts of axons. J. Anat. (Lond.)108, 231–245 (1971).

    Google Scholar 

  • Pette, E., Mannweiler, K., Palacios, O., Mütze, B.: Phenomena of the cell membrane and their possible significance for the pathogenesis of so-called auto-immune diseases of the nervous system. Ann. N. Y. Acad. Sci.122, 417–428 (1965).

    Google Scholar 

  • Robertson, J. D.: The ultrastructure of adult vertebrate peripheral myelinated nerve fibers in relation to myelinogenesis. J. biophys. biochem. Cytol.1, 271–278 (1955).

    Google Scholar 

  • Schröder, J. M., Krücke, W.: Zur Feinstruktur der experimentell-allergischen Neuritis beim Kaninchen. Acta neuropath. (Berl.)14, 261–283 (1970).

    Google Scholar 

  • Sherwin, A. L.: Chronic allergic neuropathy in the rabbit. Arch. Neurol. (Chic.)15, 289–293 (1966).

    Google Scholar 

  • —, Richter, M., Cosgrove, J. B., Rose, B.: Myelin-binding antibodies in experimental “allergic” encephalomyelitis. Science134, 1370–1372 (1961).

    Google Scholar 

  • Waksman, B. H., Adams, R. D.: Allergic neuritis: an experimental disease of rabbit induced by the injection of peripheral nervous tissue and adjuvants. J. exp. Med.102, 213–236 (1955).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, H.C., Allt, G. & Evans, D.H.L. A study of the capacity of myelinated and unmyelinated nerves to induce experimental allergic neuritis. Acta Neuropathol 21, 99–108 (1972). https://doi.org/10.1007/BF00687564

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00687564

Key words

Navigation