Skip to main content
Log in

Biosynthesis of β-glucans in fungi

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Glucans are the most abundant polysaccharides present in fungi. The present review provides updated information on the structure and synthesis of β-glucans in fungal cells. Synthesis of these polymers made up of B1,3 chains with a variable degree of B1,6 branching involves several reactions: initiation, chain elongation and branching, of which the most studied one is the elongation step. This reaction, catalyzed by the so-called glucan synthetases, utilizes UDPG as sugar donor. Properties of glucan synthetases are extremely variable depending on the fungal species, and their developmental stage. Because of the importance of these polysaccharides it is anticipated that comprehension of their mechanism of synthesis, is important for the understanding of cell wall assembly and cell growth and morphogenesis, as well as for the design of specific antifungal drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

UDPG:

uridine-diphospho-glucose

GDPG:

guanosine-diphospho-glucose

ADPG:

adenosine-diphospho-glucose

MW:

molecular weight

mic:

minimal inhibitory concentration

d.p.:

degree of polymerization

PAGE:

polyacrylamide gel electrophoresis

SDS:

sodium dodecyl sulfate

References

  • Andaluz E, Guillen A, Caceres P & Larriba G (1985) Preliminary characterization of two glucan synthetase preparations and their reaction products fromCandida albicans. Microbiologia 1: 5–17

    Google Scholar 

  • Andaluz E, Guillen A & Larriba G (1986) Preliminary evidence for a glucan acceptor in the yeastCandida albicans. Biochem. J. 240: 495–502

    Google Scholar 

  • Andaluz E, Ridruejo JC, Ramirez M, Ruiz-Herrera J & Larriba G (1988) Initiation of glucan synthesis in yeast. FEMS Microbiol. Lett. 49: 251–255

    Google Scholar 

  • Bacon JSD, Jones D, Farmer VC & Webley DM (1968) The occurrence of α-(1–3) glucan inCryptococcus, Schizosaccharomyces andPolyporus species, and its hydrolysis by aStreptomyces culture filtrate lysing cell walls ofCryptococcus. Biochim. Biophys. Acta 158: 313–315

    Google Scholar 

  • Baguley BC, Rommele G, Gruner J & Wehrli W (1979) Papulacandin B: an inhibitor of glucan synthesis in yeast spheroplasts. Eur. J. Biochem. 97: 345–351

    Google Scholar 

  • Balint S, Farkas V & Bauer S (1976) Biosynthesis of β-glucans catalyzed by a particulate enzyme preparation from yeast. FEBS Lett. 64: 44–47

    Google Scholar 

  • Barker SA, Bourne EJ, O'Mant DF & Stacey M (1957) Studies ofA. niger. Part IV. The separation and structures of oligosaccharides from nigeran. J. Chem. Soc. 2448–2454

  • Bartnicki-Garcia S (1968) Cell wall chemistry, morphogenesis and taxonomy of fungi. Ann. Rev. Microbiol. 22: 87–109

    Google Scholar 

  • Beauvais A & Latge JP (1989) Chitin and β (1–3) glucan synthase in the protoplastic entomophthorales. Arch. Microbiol. 152: 229–236

    Google Scholar 

  • Boone C, Sommer SS, Hensel A & Bussey H (1990) YeastKRE genes provide evidence for a pathway of cell wall β-glucan assembly. J. Cell Biol. 110: 1833–1843

    Google Scholar 

  • Carbonell LM, Kanetsuna F & Gil F (1970) Chemical morphology of glucan and chitin in the cell wall of the yeast phase ofParacoccidioides brasiliensis. J. Bacteriol. 101: 636–642

    Google Scholar 

  • Cerenius L & Soderhall K (1984) Isolation and properties of β-glucan synthetase from the aquatic fungus,Aphanomyces astaci. Physiol. Plant. 60: 247–252

    Google Scholar 

  • Fevre M (1983a) Nucleotide effects on glucan-synthesis activities of particulate enzymes fromSaprolegnia. Planta 159: 130–135

    Google Scholar 

  • — (1983b) Inhibitors of synthesis of lipid-linked saccharides also inhibit β-glucan synthesis by cell-free extracts of the fungusSaprolegnia monoica. J. Gen. Microbiol. 129: 3007–3013

    Google Scholar 

  • Fevre M & Dumas C (1977) β-Glucan synthetase fromSaprolegnia monoica. J. Gen. Microbiol. 103: 297–306

    Google Scholar 

  • Fevre M & Rougier M (1981) β-1,3- and β-1,4-Glucan synthesis by menbrane fractions from the fungusSaprolegnia. Planta 151: 232–241

    Google Scholar 

  • Fleet GH & Manners DJ (1976) Isolation and composition of an alkali-soluble glucan from the cell walls ofSaccharomyces cerevisiae. J. Gen. Microbiol. 94: 180–192

    Google Scholar 

  • Finkelman MAJ & Vardanis A (1987) Synthesis of β-glucan by cell-free extracts ofAureobasidium pullulans. Can. J. Microbiol. 33: 123–127

    Google Scholar 

  • Guillen A, Leal F, Andaluz E & Larriba G (1985) Endogenous factors that modulate yeast glucan synthetase in cell-free extracts. Biochim. Biophys. Acta 842: 151–161

    Google Scholar 

  • Hrmova M, Taft CS & Selitrennikoff CP (1989) 1,3-β-D-Glucan synthase ofNeurospora crassa: partial purification and characterization of solubilized enzyme. Exp. Mycol. 13: 129–139

    Google Scholar 

  • Kang MS & Cabib E (1986) Regulation of fungal cell wall growth: A guanine nucleotide-binding proteinaceous component required for activity of (1–3)-β-D-glucan synthase. Proc. Natl. Acad. Sci. USA 83: 5808–5812

    Google Scholar 

  • Kopecka M & Kreger DR (1986) Assembly of microfibrils in vivo and in vitro from (1 → 3)-β-D-glucan synthesized by protoplasts ofSaccharomyces cerevisiae. Arch. Microbiol. 143: 387–395

    Google Scholar 

  • Kreger DR & Kopecka M (1975) On the nature and formation of the fibrillar nets produced by protoplasts ofSaccharomyces cerevisiae in liquid media: An electronmicroscopic, X-ray diffraction and chemical study. J. Gen. Microbiol. 92: 207–220

    Google Scholar 

  • Larriba G, Morales M & Ruiz-Herrera J (1981) Biosynthesis of β-glucan microfibrils by cell-free extracts fromSaccharomyces cerevisiae. J. Gen. Microbiol. 124: 375–383

    Google Scholar 

  • Leal F, Ruiz-Herrera J, Villanueva JR & Larriba G (1984) An examination of factors affecting the instability ofSaccharomyces cerevisiae glucan synthetase in cell-free extracts. Arch. Microbiol. 137: 209–214

    Google Scholar 

  • Lopez-Romero E & Ruiz-Herrera J (1977) Biosynthesis of β-glucans by cell free extracts fromSaccharomyces cerevisiae. Biochim. Biophys. Acta 500: 372–384

    Google Scholar 

  • — (1978) Properties of β-glucan synthetase fromSaccharomyces cerevisiae. Ant. v. Leeuwenhoek 44: 329–339

    Google Scholar 

  • Manners DJ, Masson AJ & Patterson JC (1973a) The structure of a β-(1 3)-D-glucan from yeast cell walls. Biochem. J. 135: 19–30

    Google Scholar 

  • Manners DJ, Masson AJ, Patterson JC & Bjorndal H (1973b) The structure of a β-(1 → 6)-glucan from yeast cell walls. Biochem. J. 135: 31–36

    Google Scholar 

  • Meaden P, Hill K, Wagner J, Slipetz D, Sommer SS & Bussey H (1990) The yeastKRE5 gene encodes a probable endoplasmic reticulum protein required for (1 → 6)-β-D-glucan synthesis and normal cell growth. Mol. Cell. Biol. 10: 3013–3019

    Google Scholar 

  • Mishra NC & Tatum EL (1972) Effect of L-sorbose on polysaccharide synthetases ofNeurospora crassa. Proc. Natl. Acad. Sci. USA 69: 313–317

    Google Scholar 

  • Miyata M, Kanbe T & Tanaka K (1985) Morphological alterations of the fission yeastSchizosaccharomyces pombe in the presence of aculeacin A: spherical wall formation. J. Gen. Microbiol. 131: 611–621

    Google Scholar 

  • Mol PC & Wessels JGH (1987) Linkages between glucosaminoglycan and glucan determine alkali-insolubility of the glucans in walls ofSaccharomyces cerevisiae. FEMS Microbiol. Lett. 41: 95–99

    Google Scholar 

  • Notario V, Kawai H & Cabib E (1982)Interaction between yeast β-(1 → 3)-glucan synthetase and activating phosphorylated compounds. A kinetic study. J. Biol. Chem. 25: 1902–1905

    Google Scholar 

  • Orlean PAB (1982) (1,3)-β-Glucan synthase from budding and filamentous cultures of the dimorphic fungusCandida albicans. Eur. J. Biochem. 127: 397–403

    Google Scholar 

  • Orlean PAB & Ward SM (1983) Sodium fluoride stimulates (1,3)-β-D-glucan synthase fromCandida albicans. FEMS Microbiol. Lett. 18: 31–35

    Google Scholar 

  • Perez P, Garcia-Acha I & Duran A (1983) Effect of papulacandin B on the cell wall and growth ofGeotrichum lactis. J. Gen. Microbiol. 129: 245–250

    Google Scholar 

  • Quigley DR & Selitrennikoff CP (1984) β(1–3) Glucan synthase activity ofNeurospora crassa: kinetic analysis of negative effectors. Exp. Mycol. 8: 320–333

    Google Scholar 

  • — (1988) β(1–3) Glucan synthase activity inNeurospora crassa: reaction sequence based on kinetic evidence. Curr. Microbiol. 16: 289–293

    Google Scholar 

  • Reiskind JB & Mullins JT (1981) Molecular architecture of the hyphal wall ofAchlya ambisexualis Raper. I. Chemical analyses. Can. J. Microbiol. 27: 1092–1099

    Google Scholar 

  • Rommele G, Traxler P & Wehrli W (1983) Papulacandins. The relationship between chemical structure and effect on glucan synthesis in yeast. J. Antibiot. 36: 1539–1542

    Google Scholar 

  • San-Blas G (1979) Biosynthesis of glucans by subcellular fractions inParacoccidioides brasiliensis. Exp. Mycol. 3: 249–258

    Google Scholar 

  • San-Blas G & Carbonell LM (1974) Chemical and ultrastructural studies on the cell walls of the yeastlike and mycelial forms ofHistoplasma farciminosum. J. Bacteriol. 119: 602–611

    Google Scholar 

  • San-Blas G & San-Blas F (1986) Effect of nucleotides on glucan synthesis inParacoccidioides brasiliensis. J. Med. Vet. Mycol. 24: 243–245

    Google Scholar 

  • Sanchez-Hernandez E, Garcia-Mendoza C & Novaes-Ledieu M (1990) Chemical characterization of the hyphal walls of the basidiomyceteArmillaria mellea. Exp. Mycol 14: 178–183

    Google Scholar 

  • Shematek EM, Broatz JA & Cabib E (1980) Biosynthesis of the yeast wall. I. Preparation and properties of β-(1 → 3) glucan synthetase. J. Biol. Chem. 255: 888–894

    Google Scholar 

  • Shematek EM & Cabib E (1980) Biosynthesis of the yeast cell wall. II. Regulation of β-(1 → 3) glucan synthetase by ATP and GTP. J. Biol. Chem. 255: 895–902

    Google Scholar 

  • Stagg CM & Feather MS (1973) The characterization of a chitin-associated D-glucan from the cell walls ofAspergillus niger. Biochim. Biophys. Acta 320: 64–72

    Google Scholar 

  • Surarit R, Gopal PK & Shepherd MG (1988) Evidence for a glycosidic linkage between chitin and glucan in the cell wall ofCandida albicans. J. Gen. Microbiol. 134: 1723–1730

    Google Scholar 

  • Szaniszlo P, Kang MS & Cabib E (1985) Stimulation of β (1,3) glucan synthetase of various fungi by nucleoside triphosphates. A generalized regulatory mechanism for cell wall biosynthesis. J. Bacteriol. 161: 1188–1194

    Google Scholar 

  • Tsumuraya Y, Misaki A & Torii M (1978) A new fungal-D-glucan, elsinan, elaborated byElsinoe leucospila. Carbohyd. Res. 66: 53–65

    Google Scholar 

  • Varona R, Perez P & Duran A (1983) Effect of papulacandin B on β-glucan synthesis inSchizosaccharomyces pombe. FEMS Microbiol. Lett. 20: 243–247

    Google Scholar 

  • Wang MC & Bartnicki-Garcia S (1966) Biosynthesis of β-1,3-and β-1,6-linked glucan byPhytophthora cinnamomi cell walls. Biochem. Biophys. Res. Commun. 24: 832–837

    Google Scholar 

  • — (1973) Novel phosphoglucans from the cytoplasm ofPhytophthora palmivora and their selective occurrence in certain life cycle stages. J. Biol. Chem. 248: 4112–4118

    Google Scholar 

  • — (1974) Mycolaminarans: storage (1 → 3)-β-D-glucans from the cytoplasm of the fungusPhytophthora palmivora. Carbohyd. Res. 37: 331–338

    Google Scholar 

  • — (1976) Synthesis of β-1,3-glucan microfibrils by a cell-free extract fromPhytophthora cinnamomi. Arch. Biochem. Biophys. 175: 351–354

    Google Scholar 

  • — (1980) Distribution of mycolaminarans and cell wall β-glucans in the life cycle ofPhytophthora. Exp. Mycol. 4: 269–280

    Google Scholar 

  • — (1982) Synthesis of noncellulose cell-wall β-glucan by cell-free extracts from zoospores and cysts ofPhytophthora palmivora. Exp. Mycol. 6: 125–135

    Google Scholar 

  • Zevenhuizen LPTM & Bartnicki-Garcia S (1968) Chemical structure of the insoluble hyphal wall glucan ofPhytophthora cinnamomi. Biochemistry 8: 1496–1502

    Google Scholar 

  • — (1970) Structure and role of a soluble cytoplasmic glucan fromPhytophthora cinnamomi. J. Gen. Microbiol. 61: 183–188

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz-Herrera, J. Biosynthesis of β-glucans in fungi. Antonie van Leeuwenhoek 60, 73–81 (1991). https://doi.org/10.1007/BF00572695

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00572695

Key words

Navigation