Skip to main content
Log in

Metabolism of glucose by unicellular blue-green algae

  • Published:
Archiv für Mikrobiologie Aims and scope Submit manuscript

Summary

A facultative photo- and chemoheterotroph, the unicellular bluegreen alga Aphanocapsa 6714, dissimilates glucose with formation of CO2 as the only major product. A substantial fraction of the glucose consumed is assimilated and stored as polyglucose (probably glycogen). The oxidation of glucose proceeds through the pentose phosphate pathway. The first enzyme of this pathway, glucose-6-phosphate dehydrogenase, is partly inducible. In addition, the rate of glucose oxidation is controlled, at the level of glucose-6-phosphate dehydrogenase function, by the intracellular level of an intermediate of the Calvin cycle, ribulose-1,5-diphosphate, which is a specific allosteric inhibitor of this enzyme. As a consequence, the rate of glucose oxidation is greatly reduced by illumination, an effect reversed by the presence of DCMU, an inhibitor of photosystem II.

Two obligate photoautotrophs, Synechococcus 6301 and Aphanocapsa 6308, produce CO2 from glucose at extremely low rates, although their levels of pentose pathway enzymes and of hexokinase are similar to those in Aphanocapsa 6714. Failure to grow with glucose appears to reflect the absence of an effective glucose permease. A general hypothesis concerning the primary pathways of carbon metabolism in blue-green algae is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A (U)DPG:

ADP-glucose or UDP-glucose

G-1-P:

glucose-1-phosphate

G-6-P:

glucose-6-phosphate

G(int.) :

intracellular glucose

F-6-P:

fructose-6-phosphate

6-PG:

6-phosphogluconate

Ru-5-P:

ribulose-5-phosphate

RUDP:

ribulose-1,5-diphosphate

PGA:

3-phosphoglycerate

GAP:

glyceraldehyde-3-phosphate

References

  • Benson, A. A., Bassham, J. A., Calvin, M., Goodale, T. C., Haas, V. A., Stepka, W.: The path of carbon in photosynthesis. V. Paper chromatography and radioautography of the products. J. Amer. chem. Soc. 72, 1710–1718 (1950).

    Google Scholar 

  • Biggins, J.: Respiration in blue-green algae. J. Bact. 99, 570–575 (1969).

    PubMed  Google Scholar 

  • Bishop, N. I.: The influence of the herbicide, DCMU, on the oxygen-evolving system of photosynthesis. Biochim. biophys. Acta (Amst.) 27, 205–206 (1958).

    Article  Google Scholar 

  • Brown, A. H., Webster, G. C.: The influence of light on the respiration of the bluegreen alga Anabaena. Amer. J. Bot. 40, 753–758 (1953).

    Google Scholar 

  • Brown, A. T., Wittenberger, C. L.: Induction and regulation of a nicotinamide adenine dinucleotide-specific 6-phosphogluconate dehydrogenase in Streptococcus faecalis. J. Bact. 109, 106–115 (1972).

    PubMed  Google Scholar 

  • Cheldelin, V. H.: Metabolic pathways in microorganisms. New York-London: John Wiley 1961.

    Google Scholar 

  • Cheung, W. Y., Gibbs, M.: Dark and photometabolism of sugars by a blue-green alga: Tolypothrix tenuis. Plant Physiol. 41, 451–462 (1965).

    Google Scholar 

  • Fredrick, J. F.: Evolution of polyglucoside-synthesizing isozymes in the algae. Ann. N.Y. Acad. Sci. 175, 524–530 (1970).

    Google Scholar 

  • Gibbs, M.: Enzymes of carbohydrate metabolism, pp. 411–415. In: S. P. Colowick and Nathan O. Kaplan, eds.: Methods in enzymology, vol. I. New York: Academic Press Inc. 1955.

    Google Scholar 

  • Hoare, D. S., Hoare, S. C., Moore, R. B.: The photoassimilation of organic compounds by autotrophic blue-green algae. J. gen. Microbiol. 49, 351–370 (1967).

    Google Scholar 

  • Hoch, G., Owens, O. H., Kok, B.: Photosynthesis and respiration. Arch. Biochem. 101, 171–180 (1963).

    PubMed  Google Scholar 

  • Jones, L. W., Myers, J.: A common link between photosynthesis and respiration in blue-green algae. Nature (Lond.) 199, 670–672 (1963).

    Google Scholar 

  • Kaplan, N. O.: Symposium on multiple forms of enzymes and control mechanisms. I. Multiple forms of enzymes. Bact. Rev. 27, 155–169 (1963).

    Google Scholar 

  • Kersters, K., DeLey, J.: An easy screening assay for the enzymes of the Entner-Doudoroff pathway. Antonie v. Leeuwenhoek 34, 388–392 (1968).

    Google Scholar 

  • King, T. E., Cheldelin, V. H.: Multiple pathways of glucose oxidation in Acetobacter suboxydans. Biochem. J. 68, 31P (1958).

  • Kornberg, A., Smyrniotis, P.Z.: Enzymes of carbohydrate metabolism, pp. 323–327. In: S. P. Colowick and Nathan O. Kaplan, eds.: Methods in enzymology, vol. I. New York: Academic Press Inc. 1955.

    Google Scholar 

  • Ling, Kuo-Huang, Byrne, W. L., Lardy, H.: Enzymes of carbohydrate metabolism, pp. 306–310. In: S. P. Colowick and Nathan O. Kaplan, eds.: Methods in enzymology, vol. I. New York: Academic Press Inc. 1955.

    Google Scholar 

  • McDonald, M. R.: Enzymes of carbohydrate metabolism, pp. 269–276. In: S. P. Colowick and Nathan O. Kaplan, eds.: Methods in enzymology, vol. I. New York: Academic Press Inc. 1955.

    Google Scholar 

  • Meloche, H. P., Wood, W. A.: Enzymes of carbohydrate metabolism, pp. 520–524. In: W. A. Wood, ed.: Methods in enzymology, vol. IX. New York: Academic Press Inc. 1966.

    Google Scholar 

  • Pearce, J., Carr, N. G.: The incorporation and metabolism of glucose by Anabaena variabilis. J. gen. Microbiol. 54, 451–462 (1969).

    Google Scholar 

  • Pearce, J., Leach, C. K., Carr, N. G.: The incomplete tricarboxylic acid cycle in the blue-green alga Anabaena variabilis. J. gen. Microbiol. 55, 371–378 (1969).

    PubMed  Google Scholar 

  • Pelroy, R. A., Bassham, A. L.: Photosynthetic and dark carbon metabolism in unicellular blue-green algae. Arch. Mikrobiol. 86, 25–38 (1972).

    PubMed  Google Scholar 

  • Pringsheim, E. G.: The Vitreoscillaceae: a family of colourless, gliding, filamentous organisms. J. gen. Microbiol. 5, 124–149 (1951).

    PubMed  Google Scholar 

  • Rippka, R.: Photoheterotrophy and chemoheterotrophy among unicellular blue-green algae. Arch. Mikrobiol. (in press) (1972).

  • Smith, A. J., London, J., Stanier, R. Y.: Biochemical basis of obligate autotrophy in blue-green algae and thiobacilli. J. Bact. 94, 972–983 (1967).

    PubMed  Google Scholar 

  • Stanier, R. Y., Kunisawa, R., Mandel, M., Cohen-Bazire, G.: Purification and properties of unicellular blue-green algae (order Chroococcales). Bact. Rev. 35, 171–205 (1971).

    PubMed  Google Scholar 

  • Taylor, J. F.: Enzymes of carbohydrates metabolism, pp. 310–315. In: S. P. Colowick and Nathan O. Kaplan, eds.: Methods in enzymology, vol. I. New York: Academic Press Inc. 1955.

    Google Scholar 

  • Trevelyan, W. E., Procter, D. P., Harrison, J. S.: Detection of sugars on paper chromatograms. Nature (Lond.) 166, 444–445 (1950).

    Google Scholar 

  • Wang, C. H., Stern, I., Gilmour, C. M., Klungsoyr, S., Reed, D. J., Baily, J. J., Christensen, B. E., Cheldelin, V. H.: Comparative study of glucose catabolism by the radiorespirometric method. J. Bact. 76, 207–216 (1958).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelroy, R.A., Rippka, R. & Stanier, R.Y. Metabolism of glucose by unicellular blue-green algae. Archiv. Mikrobiol. 87, 303–322 (1972). https://doi.org/10.1007/BF00409131

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00409131

Keywords

Navigation