Skip to main content
Log in

Energy transduction and solute transport in streptococci

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Metabolic energy in lactic streptococci can be generated by substrate level phosphorylation and by efflux of end-products in symport with protons. During growth on lactose or glucose Streptococcus cremoris maintains a high proton motive force and phosphate potential. Both energy intermediates dissipate rapidly when the energy supply stops. In the initial phase of starvation the internal phosphoenolpyruvate (PEP) pool increases rapidly and this enables the organism for a prolonged period during starvation to accumulate the energy source via a PEP-dependent uptake system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdelal, A. T. 1979. Arginine catabolism by microorganisms.—Ann. Rev. Microbiol. 33: 139–168.

    Google Scholar 

  • Bragg, P. D. 1979. Electron transport and energy-transducing systems of Escherichia coli. p. 341–449. In R. A. Capaldi (ed.), Membrane Proteins in Energy Transduction.—Marcel Dekker Inc., New York.

    Google Scholar 

  • Bruhn, J. C. and Collins, E. B. 1970. Reduced nicotinamide adenine dinucleotide oxidase of Streptococcus diacetilactis.—J. Dairy Sci. 53: 857–860.

    Google Scholar 

  • Clarke, D. J. and Knowles, C. J. 1980. The effect of haematin and catalase on Streptococcus faecalis var. zymogenes growing on glycerol.—J. Gen. Microbiol. 121: 339–347.

    Google Scholar 

  • Deibel, R. H. 1964. Utilization of arginine as an energy source for the growth of Streptococcus faecalis.—J. Bacteriol. 87: 988–992.

    Google Scholar 

  • Harold, F. M. and Papineau, D. 1972. Cation transport and electrogenesis by Streptococcus faecalis. I. The membrane potential.—J. Membr. Biol. 8: 27–44.

    Google Scholar 

  • Harold, F. M., Pavlasova, E. and Baarda, J. R. 1970. A transmembrane pH gradient in Streptococcus faecalis: origin, and dissipation by proton conductors and N, N-dicyclohexyl carbodiimide. —Biochim. Biophys. Acta 196: 235–244.

    Google Scholar 

  • Heefner, D. L. and Harold, F. M. 1982. ATP-driven sodium pump in Streptococcus faecalis.—Proc. Natl Acad. Sci. USA 79: 2798–2802.

    Google Scholar 

  • Jones, D. 1978. Composition and differentiation of the genus Streptococcus. p. 1–49. In F. A. Skinner and L. B. Quesnel (eds), Streptococci.—Academic Press, London.

    Google Scholar 

  • Kaars Sijpesteijn, A. 1970. Induction of cytochrome formation and stimulation of oxidative dissimilation by hemin in Streptococcus lactis and Leuconostoc mesenteroides.—Antonie van Leeuwenhoek 36: 335–348.

    Google Scholar 

  • Kashket, E. R. 1981. Proton motive force in growing Streptococcus lactis and Staphylococcus aureus cells under aerobic and anaerobic conditions.—J. Bacteriol. 146: 369–376.

    Google Scholar 

  • Kashket, E. R., Blanchard, A. G. and Metzger, W. C. 1980. Proton motive force during growth of Streptococcus lactis cells.—J. Bacteriol. 143: 128–134.

    Google Scholar 

  • Kihara, H., Ikawa, M. and Snell, E. E. 1961. Peptides and bacterial growth X. Relation of uptake and hydrolysis to utilization of d-alanine peptides for growth of Streptococcus faecalis.—J. Biol. Chem. 236: 172–176.

    Google Scholar 

  • Kihara, H., Klatt, O. A. and Snell, E. E. 1952. Peptides and bacterial growth III. Utilization of tyrosine and tyrosine peptides by Streptococcus faecalis.—J. Biol. Chem. 197: 801–807.

    Google Scholar 

  • Konings, W. N. and Michels, P. A. M. 1980. Electron transfer driven solute translocation across bacterial membranes. p. 33–86. In C. J. Knowles (ed.), Diversity of Bacterial Respiratory Systems. —CRC Press Inc., Boca Raton.

    Google Scholar 

  • Lee, R., Molskness, T., Sandine, W. E. and Elliker, P. R. 1973. Carbohydrate metabolism in lactic streptococci: fate of galactose supplied in free or disaccharide form.—Appl. Microbiol. 26: 951–958.

    Google Scholar 

  • Mackey, J. K. and Raymond, B. W. 1968. Activities of arginine dihydrolase and phosphatase in Streptococcus faecalis and Streptococcus faecium.—Appl. Microbiol. 16: 1543–1547.

    Google Scholar 

  • Maloney, P. C. 1977. Obligatory coupling between proton entry and the synthesis of adenosine 5′-triphosphate in Streptococcus lactis.—J. Bacteriol. 132: 564–575.

    Google Scholar 

  • Maloney, P. C. and Hansen, F. C. 1982. Stoichiometry of proton movements coupled to ATP synthesis driven by a pH gradient in Streptococcus lactis.—J. Membr. Biol. 66: 63–77.

    Google Scholar 

  • Maloney, P. C., Kashket, E. R. and Wilson, T. H. 1974. A protonmotive force drives ATP synthesis in bacteria.—Proc. Natl Acad. Sci. USA 71: 3896–3900.

    Google Scholar 

  • Maloney, P. C. and Saitta, M. R. 1982. Stoichiometry of proton-adenosine 5′-triphosphate during ATP hydrolysis by the proton-translocating ATP ase of Streptococcus lactis.—Abstr. Ann. Meet. Am. Soc. Microbiol. 82: 140.

    Google Scholar 

  • Maloney, P. C. and Wilson, T. H. 1975. ATP synthesis driven by a proton motive force in Streptococcus lactis.—J. Membr. Biol. 25: 285–310.

    Google Scholar 

  • McKay, L., Miller III, A., Sandine, W. E. and Elliker, P. R. 1970. Mechanisms of lactose utilization by lactic acid streptococci: enzymatic and genetic analyses.—J. Bacteriol. 102: 804–809.

    Google Scholar 

  • McKay, L. L., Walter, L. A., Sandine, W. E. and Elliker, P. R. 1969. Involvement of phosphoenolpyruvate in lactose utilization by group N-streptococci.—J. Bacteriol. 99: 603–610.

    Google Scholar 

  • Michels, P. A. M., Michels, J. P. J., Boonstra, J. and Konings, W. N. 1979. Generation of electrochemical proton gradient in bacteria by the excretion of metabolic end products.—FEMS Microbiol. Lett. 5: 357–364.

    Google Scholar 

  • Nisbet, T. M. and Payne, J. W. 1982. The characteristics of peptide uptake in Streptococcus faecalis: studies on the transport of natural peptides and antibacterial phosphonopeptides.—J. Gen. Microbiol. 128: 1357–1364.

    Google Scholar 

  • Otto, R. 1981. An ecophysiological study of starter streptococci.—Ph. D. Thesis, University of Groningen.

  • Otto, R., Hugenholtz, J., Konings, W. N. and Veldkamp, H. 1980a. Increase of molar growth yield of Streptococcus cremoris for lactose as a consequence of lactate consumption by Pseudomonas stutzeri in mixed culture.—FEMS Microbiol. Lett. 9: 85–88.

    Google Scholar 

  • Otto, R., Lageveen, R. G., Veldkamp, H. and Konings, W. N. 1982. Lactate efflux-induced electrical potential in membrane vesicles of Streptococcus cremoris.—J. Bacteriol. 149: 733–738.

    Google Scholar 

  • Otto, R., Sonnenberg, A. S. M., Veldkamp, H. and Konings, W. N. 1980b. Generation of an electrochemical proton gradient in Streptococcus cremoris by lactate efflux.—Proc. Natl Acad. Sci. USA 77: 5502–5506.

    Google Scholar 

  • Otto, R., Ten Brink, B., Veldkamp, H. and Konings, W. N. 1983. The relation between growth rate and electrochemical proton gradient of Streptococcus cremoris.—FEMS Microbiol. Lett. 16: 69–74.

    Google Scholar 

  • Payne, J. W. 1980. Transport and utilization of peptides by bacteria. p. 211–256. In J. W. Payne (ed.), Microorganisms and Nitrogen Sources.—John Wiley and Sons, Chichester.

    Google Scholar 

  • Payne, J. W. and Nisbet, T. M. 1981. Continuous monitoring of substrate uptake by microorganisms using fluorescamine: application to peptide transport by Saccharomyces cerevisiae and Streptococcus faecalis.—J. Appl. Biochem. 3: 447–458.

    Google Scholar 

  • Payne, J. W., Payne, G. M. and Nisbet, T. M. 1982. An anionic peptide transport system in Streptococcus faecalis.—FEMS Microbiol. Lett. 14: 123–127.

    Google Scholar 

  • Ritchey, T. W. and Seeley, H. W. 1976. Distribution of cytochrome-like respiration in streptococci. —J. Gen. Microbiol. 93: 195–203.

    Google Scholar 

  • Romano, A. H., Trifone, J. D. and Brustolon, M. 1979. Distribution of the phosphoenolpyruvate: glucose phosphotransferase system in fermentative bacteria.—J. Bacteriol. 139: 93–97.

    Google Scholar 

  • Slee, A. M. and Tanzer, J. M. 1979. Phosphoenolpyruvate-dependent sucrose phosphotransferase activity in Streptococcus mutans NCTC 10449.—Infect. Immun. 24: 821–828.

    Google Scholar 

  • St. Martin, E. J. and Wittenberger, C. L. 1979. Characterization of a phosphoenolpyruvate-dependent sucrose phosphotransferase system in Streptococcus mutans.—Infect. Immun. 24: 865–868.

    Google Scholar 

  • Ten Brink, B. and Konings, W. N. 1982. Electrochemical proton gradient and lactate concentration gradient in Streptococcus cremoris cells grown in batch culture.—J. Bacteriol. 152: 682–686.

    Google Scholar 

  • Thauer, R. K., Jungermann, K. and Decker, K. 1977. Energy conservation in chemotrophic anaerobic bacteria.—Bacteriol. Rev. 41: 100–180.

    Google Scholar 

  • Thomas, T. D. and Batt, R. D. 1969. Degradation of cell constituents by starved Streptococcus lactis in relation to survival.—J. Gen. Microbiol. 58: 347–362.

    Google Scholar 

  • Thomas, T. D., Ellwood, D. C. and Longyear, V. M. C. 1979. Change from homo-to heterolactic fermentation by Streptococcus lactis resulting from glucose limitation in anaerobic chemostat cultures.—J. Bacteriol. 138: 109–117.

    Google Scholar 

  • Thompson, J. 1978. In vivo regulation of glycolysis and characterization of sugar: phosphotransferase systems in Streptococcus lactis.—J. Bacteriol. 136: 465–476.

    Google Scholar 

  • Thompson, J. 1980. Galactose transport systems in Streptococcus lactis.—J. Bacteriol. 144: 683–691.

    Google Scholar 

  • Thompson, J. and Chassy, B. M. 1981. Uptake and metabolism of sucrose by Streptococcus lactis. —J. Bacteriol. 147: 543–551.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konings, W.N., Otto, R. Energy transduction and solute transport in streptococci. Antonie van Leeuwenhoek 49, 247–257 (1983). https://doi.org/10.1007/BF00399501

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00399501

Keywords

Navigation