Skip to main content
Log in

Unsaturated fatty acid composition of wild type and respiratory deficient yeasts after aerobic and anaerobic growth

  • Physiology and Growth
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

An analysis is given of the fatty acid composition of 18 yeast species, predominantly of the genus Saccharomyces; respiratory deficient mutant strains are included. The results are discussed from chemotaxonomical and physiological viewpoints, with special attention to unsaturated fatty acids and their relation to the petite mutation.

The fatty acid composition of anaerobically grown Saccharomyces cerevisiae remains restricted, as far as unsaturated fatty acids are concerned, to those added to the medium and it may thus differ considerably from the composition after aerobic growth. Depending on the acids added, the cells may contain either palmitoleic or linoleic acids as the sole unsaturated fatty acid after anaerobic growth and as the predominant unsaturated fatty acid after aerobic growth. In contrast to all other known eukaryotes, Schizosaccharomyces japonicus seems to possess an anaerobic pathway for synthesis of unsaturated fatty acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreasen, A. A. and Stier, T. J. B. 1953. Anaerobic nutrition of Saccharomyces cerevisiae. I. Ergosterol requirement for growth in a defined medium. — J. Cell. Comp. Physiol. 41: 23–36.

    Google Scholar 

  • Andreasen, A. A. and Stier, T. J. B. 1954. Anaerobic nutrition of Saccharomyces cerevisiae. II. Unsaturated fatty acid requirement for growth in a defined medium. — J. Cell. Comp. Physiol. 43: 271–281.

    Google Scholar 

  • Babij, T., Moss, F. J. and Ralph, B. J. 1969. Effects of oxygen and glucose levels on lipid composition of the yeast Candida utilis grown in continuous culture. — Biotechnol. Bioeng. 11: 593–603.

    PubMed  Google Scholar 

  • Brown, C. M. and Johnson, B. 1970. Influence of the concentration of glucose and galactose on the physiology of Saccharomyces cerevisiae in continuous culture. — J. Gen. Microbiol. 64: 279–287.

    PubMed  Google Scholar 

  • Brown, C. M. and Johnson, B. 1971. Influence of oxygen tension on the physiology of Saccharomyces cerevisiae in continuous culture. — Antonie van Leeuwenhoek 37: 477–487.

    PubMed  Google Scholar 

  • Brown, C. M. and Rose, A. H. 1969. Effects of temperature on composition and cell volume of Candida utilis. — J. Bactericl. 97: 261–272.

    Google Scholar 

  • Bulder, C. J. E. A. 1964a. Induction of petite mutation and inhibition of synthesis of respiratory enzymes in various yeasts. — Antonie van Leeuwenhoek 30: 1–9.

    PubMed  Google Scholar 

  • Bulder, C. J. E. A. 1964b. Lethality of the petite mutation in petite negative yeasts. — Antonie van Leeuwenhoek 30: 442–454.

    PubMed  Google Scholar 

  • Bulder, C. J. E. A. 1971. Anaerobic growth, ergosterol content and sensitivity to a polyene antibiotic, of the yeast Schizosaccharomyces japonicus. — Antonie van Leeuwenhoek 37: 353–358.

    PubMed  Google Scholar 

  • De Deken, R. H. 1966. The Crabtree effect and its relation to the petite mutation. — J. Gen. Microbiol. 44: 157–165.

    PubMed  Google Scholar 

  • Hoppe, W. 1960. Die Lipide der Hefen, p. 465–513. In F. Reiff et al. (ed.), Die Hefen, I Band. — Hans Carl, Nürnberg.

    Google Scholar 

  • Johnson, B. and Brown, C. M. 1972. A possible relationship between the fatty acid composition of yeasts and the “petite” mutation. — Antonie van Leeuwenhoek 38: 137–144.

    PubMed  Google Scholar 

  • Johnson, B., Nelson, S. J. and Brown, C. M. 1972. Influence of glucose concentration on the physiology and lipid composition of some yeasts. — Antonie van Leeuwenhoek 38: 129–136.

    PubMed  Google Scholar 

  • Kates, M. 1966. Biosynthesis of lipids in microorganisms. — Annu. Rev. Microbiol. 20: 13–44.

    Article  PubMed  Google Scholar 

  • Millbank, J. W. 1962. The action of acriflavine on yeast protoplasts. — Antonie van Leeuwenhoek 28: 215–220.

    Google Scholar 

  • Proudlock, J. W., Haslam, J. M. and Linnane, A. W. 1969. Specific effect of unsaturated fatty acid depletion on mitochondrial oxidative phosphorylation in Saccharomyces cerevisiae. — Biochem. Biophys. Res. Commun. 37: 847–852.

    PubMed  Google Scholar 

  • Resnick, M. A. and Mortimer, R. K. 1966. Unsaturated fatty acid mutants of Saccharomyces cerevisiae. — J. Bacteriol. 92: 597–600.

    PubMed  Google Scholar 

  • Stumpf, P. K., Vijay, I. and Harwood, J. L. 1972. Biosynthesis of unsaturated fatty acids by higher plant systems, p. 57–63. In Ganguly, J. and Smellie, R. M. S. (eds.). Current trends in the biochemistry of lipids. — Academic Press, London and New York.

    Google Scholar 

  • Wisnieski, B. J., Keith, A. D. and Resnick, M. R. 1970. Double-bond requirement in a fatty acid desaturase mutant of Saccharomyces cerevisiae. — J. Bacteriol. 101: 160–165.

    PubMed  Google Scholar 

  • Wisnieski, B. J. and Kiyomoto, R. K. 1972. Fatty acid desaturase mutants of yeast: growth requirements and electron spin resonance spin-label distribution. — J. Bacteriol. 109: 186–195.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bulder, C.J.E.A., Reinink, M. Unsaturated fatty acid composition of wild type and respiratory deficient yeasts after aerobic and anaerobic growth. Antonie van Leeuwenhoek 40, 445–455 (1974). https://doi.org/10.1007/BF00399357

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00399357

Keywords

Navigation