Skip to main content
Log in

Ecophysiological studies on the shrub Vaccinium myrtillus L. taken from a wide altitudinal range

  • Original Papers
  • Published:
Oecologia Aims and scope Submit manuscript

Summary

Observations have been made on the gas exchange and morphology of Vaccinium myrtillus taken from altitudes of 200 m, 610 m and 1,100 m along an altitudinal gradient in central Scotland. Under saturating irradiance, optimum temperatures and a range of vapour pressure deficits, photosynthetic rate and stomatal conductance increased with the altitude of origin of the populations. Correlated with these increases was an increase in the adaxial stomatal density with altitude. This response to altitude could be simulated in controlled conditions, by growing plants in a CO2 concentration below ambient, similar to that expected at altitude.

Plant height decreased with altitude, a feature which was maintained in cultivation. Stem rigidity declined with altitude, in a manner which is predicted to limit the reproductive capacity of the population from 1,100 m in high wind speeds.

Total leaf nitrogen increased with altitude. The nitrogen economy of the shoot is discussed in terms of nitrogen availability for stems and leaves and its control over maximum rates of photosynthesis, competitive ability and reproductive capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barry RG (1981) Mountain weather and climate. Methuen & Co. Ltd., London

    Google Scholar 

  • Billings WD, Clebsch EEC, Mooney HA (1961) Effect of low concentration of carbon-dioxide on photosynthesis rates of two races of Oxyria. Science 133:1834

    Google Scholar 

  • Butler P (1985) The ecology of dwarf shrub species from diverse altitudes and latitudes. PhD thesis. University of Cambridge, p 187

  • Caemmerer S von, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387

    Google Scholar 

  • Clausen J, Keck DD, Hiesey WM (1940) Experimental studies on the nature of species. I. The effect of varied environments on western north American plants. Carnegie Institution of Washington Publication 520:1–452

    Google Scholar 

  • Cowan IR (1977) Stomatal behaviour and environment. Adv Bot Res 4:117–228

    Google Scholar 

  • Davies WJ, Gill K, Halliday G (1978) The influence of wind on the behaviour of stomata of photosynthetic stems of Cytisus scoparius (L.) Link. Ann Bot 42:1149–1154

    Google Scholar 

  • Easty AC, Young S (1976) A small scale dewpoint humidity measurer. J Phys E 9:106–110

    Google Scholar 

  • Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Ann Rev Plant Physiol 33:317–345

    Google Scholar 

  • Gale J (1972) Availability of carbon dioxide for photosynthesis at high altitudes. Ecology 53:494–497

    Google Scholar 

  • Grace J (1977) Plant response to wind. Academic Press, London

    Google Scholar 

  • Grace J, Russell G (1977) The effect of wind on grasses. III. Influence of continuous drought or wind on anatomy and water relations in Festuca arundinacea Schreb. J Exp Bot 28:268–278

    Google Scholar 

  • Harbinson J, Woodward FI (1984) Field measurements of the gas exchange of woody plant species in simulated sunflecks. Ann Bot 53:841–851

    Google Scholar 

  • Hunt ER, Weber JA, Gates DM (1984) Differences between tree species in hydraulic press calibration of leaf water potential are correlated with specific leaf area. Plant Cell Env 7:597–600

    Google Scholar 

  • Jones HG (1983) Plants and microclimate. Cambridge University Press, Cambridge

    Google Scholar 

  • Körner Ch, Mayr R (1980) Stomatal behaviour in alpine plant communities between 600 and 2,600 metres above sea level. In: Grace J, Ford ED, Jarvis PG (eds) Plants and their atmospheric environment. Blackwell, Oxford, pp 205–218

    Google Scholar 

  • Körner Ch, Scheel JA, Bauer H (1979) Maximum leaf diffusive conductance in vascular plants. Photosynthetica 13:45–82

    CAS  PubMed  Google Scholar 

  • Meteorological Office (1983) Monthly weather report, vol 100. Her Majesty's Stationery Office, London

    Google Scholar 

  • Mooney HA, Wright RD, Strain BR (1964) The gas exchange capacity of plants in relation to vegetation zonation in the White Mountains of California. Amer Midl Nat 72:281–297

    Google Scholar 

  • Mooney HA, Strain BR, West M (1966) Photosynthetic efficiency at reduced carbon dioxide tensions. Ecology 47:490–491

    Google Scholar 

  • Ryle GJA, Hesketh GD (1969) Carbon dioxide uptake in nitrogen deficient plants. Crop Sci 9:451–454

    Google Scholar 

  • Slatyer RO (1970) Comparative photosynthesis, growth and transpiration of two species of Atriplex. Planta 93:175–189

    Google Scholar 

  • Tranquillini W (1979) Physiological ecology of the Alpine timberline. Springer, New York

    Google Scholar 

  • Turesson G (1925) The plant species in relation to habitat and climate. Hereditas 6:147–236

    Google Scholar 

  • Turesson G (1930) The selective effect of climate upon the plant species. Hereditas 14:99–152

    Google Scholar 

  • Wielgolaski FE, Kjelvik S, Kallio P (1975) Mineral content of tundra and forest tundra plants in Fennoscandia. In: Wielgolaski FE (ed) Fennoscandian Tundra Ecosystems. Part I. Plants and microorganisms. Springer, Berlin, pp 316–332

    Google Scholar 

  • Woodward FI (1975) The climatic control of the altitudinal distributions of Sedum rosea (L.) Scop. and S. telephium L. II. The analysis of plant growth in controlled environments. New Phytol 74:335–348

    Google Scholar 

  • Woodward FI (1979) The differential temperature responses of the growth of certain plant species from different altitudes. I. Growth analysis of Phleum alpinum L., P. bertolonii D.C., Sesleria albicans Kit. and Dactylis glomerata L. New Phytol 82:385–395

    Google Scholar 

  • Woodward FI (1983) The significance of interspecific differences in specific leaf area to the growth of selected herbaceous species from different altitudes. New Phytol 95:313–323

    Google Scholar 

  • Woodward FI, Pigott CD (1975) The climatic control of the altitudinal distributions of Sedum rosea (L.) Scop. and S. telephium L. I. Field observations. New Phytol 74:323–334.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woodward, F.I. Ecophysiological studies on the shrub Vaccinium myrtillus L. taken from a wide altitudinal range. Oecologia 70, 580–586 (1986). https://doi.org/10.1007/BF00379908

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00379908

Key words

Navigation